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Introduction
The Constrained Energy Minimization (CEM)

technique (Harsanyi, 1993) has become quite popu-
lar in recent years as a means for constructing a lin-
ear operator to perform matched filtering of
hyperspectral images.  The CEM algorithm tries to
maximize the response of the target spectral signa-
ture while suppressing the response of the unknown
background signatures.  This technique has its roots
in signal processing theory and has long been used in
electrical engineering applications.  The CEM tech-
nique  constructs an optimal linear operator that, when
applied to a hyperspectral image, produces an abun-
dance map for the every image pixel vector.  The
algorithm uses an estimate of  the sample correlation
matrix as a basis for determining the unknown back-
ground signatures and is computationally efficient.
Application of the algorithm to a hyperspectral im-
age usually provides strong suppression of the un-
desired signatures and enhances the contrast between
target spectra and the background.  These properties
make the CEM algorithm a very popular processing
technique as well as a common component of more
complicated algorithms.  However, the CEM ap-
proach has a number of significant shortcomings.  It
doesn’t perform well in the presence of low prob-
ability background signatures, and an abundance im-
age may contain a significant amount of noise and
false alarms that make detection of small targets dif-
ficult.  The standard CEM algorithm uses a single
overall correlation matrix as a description of the un-
desired background signatures.  Consequently, the
performance of the algorithm is directly related to
the complexity and diversity of the hyperspectral
scene.  Some of the existing modifications of the CEM

technique try to improve the performance of the
method by introducing spectral variability to the tra-
ditional single spectrum design (Farrand and
Harsanyi, 1997; Boardman, 1998).

Approach
We propose a modification of the CEM algo-

rithm that improves its ability to suppress low-prob-
ability undesired signatures and reduces the amount
of noise and false alarms in the abundance image.
The Locally Adaptive Constrained Energy Minimi-
zation (LA-CEM) technique tries to improve the per-
formance of the CEM algorithm by introducing a spa-
tial variability factor.  The algorithm estimates a
sample correlation matrix for every pixel vector in
the hyperspectral image and uses it to compute a lin-
ear operator using the standard CEM formula.  This
approach allows the algorithm to adapt properties of
the CEM operator to the image content around the
pixel that is being processed.

The CEM optimal linear operator (Harsanyi,
1993) is given by:

W = R-1d (dTR-1d)-1 (1)

where R-1 is the inverse of the sample correlation
matrix of the observation pixel vectors and d is a
target signature.  A shortcoming of the standard CEM
technique is that the linear operator W is the same
for every pixel in the image.  We introduce an exten-
sion to this technique that will allow the algorithm to
improve its performance based on the local statisti-
cal properties of the image.

Consider establishing a grid of non-overlap-
ping or overlapping sampling windows of size N x
M pixels over the entire image. We can compute an
estimate of the sample correlation matrix for every
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sampling window as well as its generalized
pseudoinverse.  Based on that information we can
estimate a correlation matrix for every pixel in the
image using a matrix interpolation scheme.  The sim-
plest interpolation scheme for two-dimensional data
on a regular grid is a bilinear interpolation.  The bi-
linear interpolation ensures that interpolated function
values change continuously, but the gradient of the
function changes discontinuously at the boundaries
of each sampling window.  However, this approxi-
mation is good enough for most applications consid-
ering its computational simplicity.

We can’t interpolate the correlation matrix it-
self for a particular pixel, because we are actually
after the inverse of the correlation matrix.  Comput-
ing a generalized pseudoinverse for the every pixel
in the image makes the algorithm completely imprac-
tical because of the extremely high computational ex-
penses associated with it.  The matrix inversion is
considered an N3 algorithm, so the performance of
the algorithm will quickly go down as the number of
bands in the image increases.  Increasing the number
of bands from 10 to 100 slows down the algorithm
approximately 1000 times.  We also can’t apply a
Sherman-Morrison formula for quick update of the
matrix inverse, because it is applicable only to cases
in which just a few matrix elements are changed.  In
order to solve this problem, we can consider inter-
polating not the correlation matrices themselves, but
actual inverses of them.  This approach might be
viewed as an approximate method, because the ma-
trix interpolated in the inverse space loses some of
the properties associated with a correlation matrix.
The corresponding matrix will still be symmetrical,
but diagonal elements will be not equal to 1.  Al-
though such an interpolation is not physically cor-
rect, the error associated with it is not significant
enough to offset the useful properties of the resulting
CEM operator.  However, the problem of estimating
the actual amount of distortion introduced by this ap-
proach is probably worth a special investigation that
is beyond the scope of the present study.

Another potential problem is that the scale of
values produced by any particular CEM linear op-
erator is based on the correlation matrix.  The only
output value that is fixed by the standard CEM op-
erator results from the unity constraint that ensures
an abundance value of 1 when the operator is ap-
plied to the target signature itself.  The locally adap-
tive modification of the CEM uses a separate corre-
lation matrix for every pixel in the image, so the raw
output abundance values are not strictly comparable
to each other.  We have to introduce a common scal-
ing or normalization procedure that brings different
abundance values into a comparable range.  The unity
constraint places an upper limit on the output values,
so the natural choice for the scaling procedure is to
fix an output value in the lower range of abundance
values.  A simple scaling procedure that satisfies
these requirements is given by:

A = 1 + (w * s – 1) / (2 – w * I) (2)

where A is an output abundance value, s is a current
pixel vector, w is a linear CEM operator and I is an
identity vector.  This scaling procedure preserves a
unity constraint and also ensures an abundance value
of zero when the operator is applied to a pixel signa-
ture that is an “inverted” version of the target signa-
ture:

S
0
 = I – d (3)

where S
0
 is a signature that produces a zero abun-

dance value and I is a unity vector.

Results
We applied the LA-CEM algorithm to the spec-

tral subset 2.0 – 2.4 mm of the high-altitude AVIRIS
image of the Cuprite area, Nevada.  The target spec-
trum was obtained from the same image and closely
resembled typical alunite spectra.  The same spec-
trum was used to produce an abundance image using
the traditional CEM approach.  The abundance im-
ages are compared in Figure 1, and profiles across
the images are shown in Figure 2.  These results il-
lustrate that the LA-CEM algorithm produces a much
better contrast between target and background and
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significantly reduces the amount of noise in the out-
put.  One small occurrence of alunite that is posi-
tively identifiable in the LA-CEM output is completely
obscured by noise in the standard CEM output im-
age, probably due to low-probability background sig-
natures.

amounts.  This is completely understandable consid-
ering that the algorithm depends on local image sta-
tistics.  The algorithm doesn’t produce a good con-
trast between target and background in such areas,
but the output still contains less noise than a tradi-
tional CEM abundance image.  The average abun-
dance values computed by LA-CEM for dominant
signatures are significantly overestimated compared
to a traditional CEM.  There is a partial solution to
this problem.  The performance of the algorithm might
be tuned by adjusting the size of the sampling win-
dow.  The sampling window size should be propor-
tional to the spatial dimension of the targets that the

Figure 1.  Comparison of LA-CEM (left) and traditional CEM (right) abundance images for the same area of an AVIRIS
image of Cuprite, NV.  Lighter tones indicate greater relative abundance of the target spectrum (alunite).  Contrast of the
images is enhanced for clarity.  The LA-CEM image has less noise, and clearly resolves two small areas of high alunite
abundance.  The smaller alunite area is not evident in the traditional CEM abundance image.

Figure 2.  Profiles across LA-CEM and traditional CEM abundance images. The LA-CEM profile (thicker line) shows
higher contrast and less noise in the background.
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Discussion
The LA-CEM approach shows remarkable per-

formance in detecting small (pixel and sub-pixel) tar-
gets obscured by complex backgrounds, but it doesn’t
perform well in image areas where the target spec-
trum becomes dominant or is present in significant
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algorithm is looking for.  As an approximation, the
size of the window must be at least 5-10 times bigger
than the typical size of the objects in order to pro-
vide good target differentiation.  Another way to im-
prove LA-CEM results is to use overlapping sam-
pling windows in order to provide smooth transi-
tions in the estimation of the CEM operator across
the image.  This also makes the algorithm less sensi-
tive to the way that the sampling grid is superim-
posed on the ground features.  The use of overlap-
ping sampling windows is crucial in scenes with
abrupt changes in spectral properties within the im-
age, such as agricultural fields or coastal zones.  The
non-overlapping scheme might produce noticeable
artifacts in the case where the division line between
two windows falls near the border between different
agricultural fields or near the coastline.

Another significant drawback of the CEM tech-
nique is that it is more sensitive to signal energy than
to signal shape.  The CEM operator produces differ-
ent abundance values when applied to spectra of the

same shape but with different constant components.
As a result, the algorithm is vulnerable to the influ-
ence of topographic illumination effects and additive
noise.  In order to correct this problem, the pixel
spectra might be converted into a different form that
is less sensitive to the signal energy and is able to
emphasize the shape of the spectra.  Use of first de-
rivatives might improve the results and produce less
noisy abundance images (Woods, 1984).
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