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Introduction

The Constrained Energy Minimization (CEM)
technique (Harsanyi, 1993) has become quite popu-
lar in recent years as ameans for constructing alin-
ear operator to perform matched filtering of
hyperspectral images. The CEM algorithm tries to
maximize the response of the target spectral signa-
ture while suppressing the response of the unknown
background signatures. Thistechnique hasitsroots
insignal processing theory and haslong been usedin
electrical engineering applications. The CEM tech-
nique constructsan optimal linear operator that, when
applied to ahyperspectral image, produces an abun-
dance map for the every image pixel vector. The
algorithm usesan estimate of the sample correlation
matrix asabasisfor determining the unknown back-
ground signatures and is computationally efficient.
Application of the algorithm to a hyperspectral im-
age usually provides strong suppression of the un-
desired signatures and enhancesthe contrast between
target spectraand the background. These properties
make the CEM algorithm avery popular processing
technique as well as a common component of more
complicated algorithms. However, the CEM ap-
proach has a number of significant shortcomings. It
doesn’'t perform well in the presence of low prob-
ability background signatures, and an abundanceim-
age may contain a significant amount of noise and
false alarmsthat make detection of small targetsdif-
ficult. The standard CEM algorithm uses a single
overall correlation matrix as adescription of the un-
desired background signatures. Consequently, the
performance of the algorithm is directly related to
the complexity and diversity of the hyperspectral
scene. Some of the existing modifications of the CEM

technique try to improve the performance of the
method by introducing spectral variability tothetra-
ditional single spectrum design (Farrand and
Harsanyi, 1997; Boardman, 1998).

Approach

We propose a modification of the CEM algo-
rithm that improvesits ability to suppress |ow-prob-
ability undesired signatures and reduces the amount
of noise and false aarms in the abundance image.
The Locally Adaptive Constrained Energy Minimi-
zation (LA-CEM) techniquetriesto improvethe per-
formance of the CEM algorithm by introducing aspa-
tial variability factor. The algorithm estimates a
sample correlation matrix for every pixel vector in
the hyperspectral image and usesit to computealin-
ear operator using the standard CEM formula. This
approach allowsthe algorithm to adapt properties of
the CEM operator to the image content around the
pixel that isbeing processed.

The CEM optimal linear operator (Harsanyi,
1993) isgiven by:

W =R (d'"R*d)* (@8]
where R1 is the inverse of the sample correlation
matrix of the observation pixel vectors and d is a
target signature. A shortcoming of the standard CEM
technique is that the linear operator W is the same
for every pixel intheimage. Weintroduce an exten-
sionto thistechniquethat will allow thealgorithmto
improve its performance based on the local statisti-
cal properties of theimage.

Consider establishing a grid of non-overlap-
ping or overlapping sampling windows of size N x
M pixels over the entire image. We can compute an
estimate of the sample correlation matrix for every
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sampling window as well as its generalized
pseudoinverse. Based on that information we can
estimate a correlation matrix for every pixel in the
image using amatrix interpolation scheme. Thesim-
plest interpolation scheme for two-dimensional data
on aregular grid isabilinear interpolation. The bi-
linear interpolation ensuresthat interpol ated function
values change continuously, but the gradient of the
function changes discontinuously at the boundaries
of each sampling window. However, this approxi-
mation isgood enough for most applications consid-
ering itscomputational simplicity.

We can’t interpolate the correlation matrix it-
self for a particular pixel, because we are actually
after the inverse of the correlation matrix. Comput-
ing a generalized pseudoinverse for the every pixel
intheimage makesthe agorithm completely imprac-
tical because of the extremely high computational ex-
penses associated with it. The matrix inversion is
considered an N2 algorithm, so the performance of
the algorithmwill quickly go down asthe number of
bandsin theimageincreases. Increasing the number
of bands from 10 to 100 slows down the algorithm
approximately 1000 times. We also can't apply a
Sherman-Morrison formula for quick update of the
matrix inverse, becauseit isapplicable only to cases
inwhich just afew matrix elements are changed. In
order to solve this problem, we can consider inter-
polating not the correl ation matrices themsel ves, but
actual inverses of them. This approach might be
viewed as an approximate method, because the ma-
trix interpolated in the inverse space loses some of
the properties associated with a correlation matrix.
The corresponding matrix will still be symmetrical,
but diagonal elements will be not equal to 1. Al-
though such an interpolation is not physically cor-
rect, the error associated with it is not significant
enough to offset the useful propertiesof theresulting
CEM operator. However, the problem of estimating
the actual amount of distortion introduced by thisap-
proach is probably worth aspecial investigation that
is beyond the scope of the present studly.

Another potential problem is that the scale of
values produced by any particular CEM linear op-
erator is based on the correlation matrix. The only
output value that is fixed by the standard CEM op-
erator results from the unity constraint that ensures
an abundance value of 1 when the operator is ap-
pliedtothetarget signatureitself. Thelocally adap-
tive modification of the CEM uses a separate corre-
lation matrix for every pixel intheimage, sotheraw
output abundance values are not strictly comparable
to each other. We haveto introduce acommon scal-
ing or normalization procedure that brings different
abundance vauesinto acomparablerange. Theunity
constraint placesan upper limit on the output val ues,
so the natural choice for the scaling procedure isto
fix an output value in the lower range of abundance
values. A simple scaling procedure that satisfies
theserequirementsisgiven by:

A=1+w*s=-1)/(2-w*1) (2
where A isan output abundance value, sisacurrent
pixel vector, wisalinear CEM operator and | isan
identity vector. This scaling procedure preserves a
unity constraint and al so ensures an abundance value
of zero when the operator isapplied to apixel signa-
turethat isan “inverted” version of thetarget signa-
ture:

3)

where S is a signature that produces a zero abun-
dancevalueand | isaunity vector.

Results

We applied the LA-CEM agorithm to the spec-
tral subset 2.0—2.4 mm of the high-altitude AVIRIS
image of the Cuprite area, Nevada. Thetarget spec-
trum was obtained from the same image and closely
resembled typical alunite spectra. The same spec-
trum was used to produce an abundanceimage using
the traditional CEM approach. The abundance im-
ages are compared in Figure 1, and profiles across
the images are shown in Figure 2. These resultsil-
lustratethat the LA-CEM agorithm producesamuch
better contrast between target and background and
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Figure 1. Comparison of LA-CEM (left) and traditional CEM (right) abundance images for the same area of an AVIRIS
image of Cuprite, NV. Lighter tones indicate greater relative abundance of the target spectrum (alunite). Contrast of the
images is enhanced for clarity. The LA-CEM image has less noise, and clearly resolves two small areas of high alunite
abundance. The smaller alunite area is not evident in the traditional CEM abundance image.
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Figure 2. Profiles across LA-CEM and traditional CEM abundance images. The LA-CEM profile (thicker line) shows

higher contrast and less noise in the background.

significantly reduces the amount of noisein the out-
put. One small occurrence of aunite that is posi-
tively identifiableinthe LA-CEM output iscompletely
obscured by noise in the standard CEM output im-
age, probably dueto low-probability background sig-
natures.

Discussion

TheLA-CEM approach showsremarkable per-
formancein detecting small (pixel and sub-pixel) tar-
getsobscured by complex backgrounds, but it doesn’t
perform well in image areas where the target spec-
trum becomes dominant or is present in significant

amounts. Thisiscompletely understandable consid-
ering that the algorithm depends on local image sta-
tistics. The agorithm doesn’t produce a good con-
trast between target and background in such areas,
but the output still contains less noise than a tradi-
tional CEM abundance image. The average abun-
dance values computed by LA-CEM for dominant
signatures are significantly overestimated compared
to atraditional CEM. Thereisapartia solution to
thisproblem. The performance of thea gorithm might
be tuned by adjusting the size of the sampling win-
dow. The sampling window size should be propor-
tional to the spatial dimension of the targetsthat the
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algorithm is looking for. As an approximation, the
size of thewindow must be at least 5-10 times bigger
than the typical size of the objects in order to pro-
vide good target differentiation. Another way toim-
prove LA-CEM results is to use overlapping sam-
pling windows in order to provide smooth transi-
tions in the estimation of the CEM operator across
theimage. Thisalso makesthealgorithm lesssensi-
tive to the way that the sampling grid is superim-
posed on the ground features. The use of overlap-
ping sampling windows is crucial in scenes with
abrupt changes in spectral properties within the im-
age, such asagricultural fieldsor coastal zones. The
non-overlapping scheme might produce noticeable
artifactsin the case where the division line between
two windowsfalls near the border between different
agricultural fields or near the coastline.

Another significant drawback of the CEM tech-
niqueisthat itismore sensitiveto signal energy than
to signal shape. The CEM operator producesdiffer-
ent abundance values when applied to spectraof the
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Conclusions

The Locally Adaptive Constrained Energy
Minimization (LA-CEM) algorithm has been success-
fully applied to a number of high atitude AVIRIS
images and produces superior resultsin comparison
with the traditional CEM method in detecting small
targets obscured by complex backgrounds. Theago-
rithm is suitable for detecting multi- and sub-pixel
occurrences of non-dominant materials with a sig-
nificantly reduced number of false alarm pixelsand
high contrast between target and background. The
abundanceimages produced by the LA-CEM method
areless plagued by noise and provide more spatially
accurate mapping of thetarget materia sthan thetra-
ditional technique.
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