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Abstract
The amount of information contained in a single

hyperspectral image is overwhelming for the human op-
erator.  As a result, assessing the spatial and spectral vari-
ability of a hyperspectral image is very difficult. The exist-
ing techniques mainly rely on different preprocessing al-
gorithms that reduce the high-dimensionality of the
hyperspectral data down to a few images that can be visu-
alized using traditional RGB or RGBI combinations.  The
proposed auto-correlogram approach provides a simple
framework for reducing a hyperspectral image cube to a
single grayscale image that is easy to interpret and screen
for spectral anomalies.

Introduction
The recent advances in hyperspectral data collec-

tion platforms pose some important questions about the
strategies being used for initial data analysis and interpre-
tation. There is no doubt that computer-based analysis
procedures play an important role in processing such highly
dimensional data as hyperspectral imagery.  The amount
of information contained in a single hyperspectral image
like AVIRIS is beyond human abilities to understand, vi-
sualize, and comprehend.  The problem is not just the
amount of information but its extreme high-dimensional-
ity and what is more important — high correlation be-
tween bands.  Nevertheless, the human involvement in
hyperspectral image analysis is still very high.  The impor-
tant decisions are still being made by a human operator
concerning initial data quality assessment, data processing
strategy, algorithms to apply, and features to extract.  We
are still far away from the moment when computer algo-
rithms will be able to make those decisions in the broad
range of applications.  With the expected launch of
OrbView-4, the first space-based hyperspectral imaging
platform, the amount of available hyperspectral informa-
tion is going to explode.  There is a definite need for simple

and efficient approaches to visualize hyperspectral data in
“human perceptible” ways that will help an operator un-
ambiguously assess the spatial-spectral variability of a scene.
The existing common approach usually involves applying
a dimensional reduction scheme such as the Minimum
Noise Fraction (MNF) transformation and displaying the
most informative components as an RGB or RGBI image.
The resulting representation of the hyperspectral image
cube is colorful, but not easy to interpret.  The color as-
signment varies from scene to scene and depends on a
number of factors such as spectral properties of the ground
features and their coverage in the image area, amount of
noise, etc.  In most cases this kind of visualization tech-
nique does not give a quantitative representation of the
scene and serves merely as an indicator of spatial variabil-
ity.  Another popular approach is a perspective 3D visual-
ization of the image cube.  The cube cell values are usu-
ally color-mapped to enhance the inter-band differences.
This visualization method serves primarily as a data pre-
sentation.  The visualization method that we are looking
for should provide a single image-like representation of
the whole hyperspectral data cube, allow quantitative in-
terpretation of the imagery, be scene-independent, and al-
low a direct comparison of the different images.  What we
are looking for is a visualization algorithm that will pro-
vide a human operator a simple way to assess the spec-
tral-spatial (SS) variability of the image.  Visualization of
this kind of variability provides an efficient way to quickly
screen input imagery for the presence of local anomalies
and objects of interest and to estimate the quality and
potential value of the data.  The visualization algorithm
must produce results that might be interpreted by a non-
expert and unambiguously map the spectral property of
individual pixels to a single value or a color triplet.  We
can loosely define the spectral-spatial variability of a
hyperspectral image as a 2D rectangular array of values
that assign a spectral variability factor to the every cell on
the image.  The spectral variability factor is some arbi-
trary metric that reflects the difference in spectral proper-
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ties (some sort of “distance”) between a given hyperspectral
image cell and some subset of its neighbors.  There are no
real limitations for selecting a distance measure as long as
it provides meaningful interpretation of the results, but it
might be desirable to select measures that satisfy triangu-
lar inequality.

Approach
The proposed algorithm creates an auto-correlogram,

an image-like representation of the spectral proximity be-
tween each cell in the image and its neighbors within a
user-defined distance.  The key part of constructing a use-
ful auto-correlogram is the selection of the appropriate
metric for computing the spectral “distance” or similarity
between hyperspectral image cells.  The auto-correlogram
approach is similar to the traditional spectral similarity
mapping methods, such as spectral angle mapper (SAM)
or matched filtering (MF) algorithms, but instead of com-
puting the spectral similarity between each cell and some
target material, it calculates the similarity between each
cell and some subset of its neighbors.  There is no single
universal metric that is superior to others for defining spec-
tral similarity.  The spectral curve might be viewed and
analyzed from many different viewpoints, so the similar-
ity measure should be chosen with respect to the specific
application.  A variety of algorithms have been used to
define the similarity between spectral curves.  They all
might be roughly classified into several major groups:  sta-
tistical metrics, vector geometry, and information theory
based.

Probably the most popular geometrical method is
the spectral angle mapper, which treats spectra as vectors
in n-dimensional space.  The spectral angle mapper algo-
rithm uses the angle between two vectors as a spectral
similarity metric.  The advantage of this approach is its
relative insensitivity to variation in the scene illumination
and albedo effects.  Smaller angles represent a higher de-
gree of match between spectral curves.

The RMS distance between two spectra is an ex-
ample of the popular statistical distance metric (Clark et
al, 1990):

RMS = [S (R
i
 - P

i
)2]1/2 / N (1)

where N is the number of bands, and R
i
 and P

i
 are cell

values of the spectra being compared in the band i.  The
RMS distance is a good statistical indicator of the overall
spectral similarity.  However, it is more sensitive to al-
bedo variations than to changes in the spectral curve shape.
Another vector-based measure, the vector dot product,
suffers from the same problem.

The Hamming distance is a common distance met-
ric that is used for computing spectral similarity.  This
metric is based on binary encoding of the spectra into 1-
or 2-bit elements that represent the cell value of a given
band with relation to its average value and spectral slope.
The binary encoding methods have their roots in digital
communications and information theory and are very
computationally efficient.  They have been successfully
used in mineral mapping applications (Kruse et al 1993).

The constrained energy minimization (CEM) tech-
nique, also known as matched filtering, is an example of a
more complicated statistical measure that exploits not only
the original spectra, but also statistical information about
a hyperspectral image cube in the form of the sample
correlation matrix.  The CEM optimal linear operator
(Harsanyi, 1993) is given by:

W = R-1d (dTR-1d)-1 (2)

where R-1 is the inverse of the sample correlation matrix
of the observation pixel vectors and d is a target signature.
The linear operator W is applied to every cell in the image
and yields an abundance map.  The higher abundance
values indicate a closer spectral match.  This technique
might be easily adopted as a distance metric for the auto-
correlogram approach, but it will require some additional
computation of the optimal linear operator W for every
cell in the image.  Equation (2) contains a target spectrum
that in the auto-correlogram case is the spectrum of the
cell that is being processed.  A further extension of the
CEM operator is a locally adaptive constrained energy
minimization algorithm (LA-CEM) that uses a local esti-
mation of the sample correlation matrix in some floating
window around the current cell.  This approach requires
even more computations, but in some cases it produces
better results than a traditional CEM operator.

All of the similarity measures mentioned above use
a spectral curve in its original form.  In some cases this
characteristic becomes a real shortcoming, because it makes
most of the algorithms more sensitive to variations in the
overall energy of the spectral curve than to its shape.
Spectral curve shape analysis is definitely under-exploited
in the field of spectral similarity mapping.  As a partial
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remedy, most of the algorithms above can be changed
easily to use not an original spectral curve, but a trans-
formed version that enhances the influence of the curve’s
shape on the output of the algorithm.  The simplest ap-
proach is to use derivatives of the spectra (Woods, 1984).
It has been shown that using the first derivative of the
signal can significantly enhance the output of the CEM
operator (Frolov and Smith, 1999).  The abundance map
produced contains less noise and has better contrast char-
acteristics.

We also have to mention the importance of image
calibration for mapping a spectral similarity.  It is desirable
to apply an appropriate calibration to the image in order to
standardize the signal amplitude in the different bands.
The auto-correlogram approach is also sensitive to the
image calibration, because that might result in unequal
weighting of the bands in the output similarity map.  How-
ever, the selection of the particular image calibration algo-
rithm is not as important as for traditional spectral match-
ing applications and might be considered more as a statis-
tical normalization procedure.

So far we have been discussing spectral similarity
measures and ignoring another important aspect of the
auto-correlogram approach.  The spatial aspect of the SS-
variability is probably equally significant for achieving good
results.   We have defined an auto-correlogram operator
as a measure of the spectral similarity between an image
cell and some set of its neighbors.  There is an obvious
analogy with conventional spatial image filtering techniques
that use a moving window for computing a filter response.
The auto-correlogram (AC) approach might be viewed as
a combination of image filtering and spectral similarity map-
ping techniques.  One can easily derive a number of useful
auto-correlogram operators by combining an appropriate
spectral similarity measure with a spatial filter design.  The
first approach is to construct an auto-correlogram opera-
tor that computes a spectral distance between the center
cell of the moving filter window and every other cell in it.

The spatial filtering portion of the algorithm then applies a
filter kernel or function to the set of similarity values and
outputs a single parameter to the auto-correlogram image.

The advantage of this approach is that we can use a
great variety of existing spatial filters and utilize the statis-
tical properties of the spectral similarity values for the
given cell.  The alternative, but less attractive approach is
to somehow process all cell spectra within the moving
window and assemble a single representative spectrum
that will be used in the spectral similarity computation.
The drawback of this method is that the statistical infor-
mation about the local spectral variability of the image
will be lost for further processing or output.  Besides, it
will limit the possible range of processing algorithms that
might be generated using this approach.

We can start the list of possible spatial filters with
the simple filter that does a weighted averaging of spectral
similarity values within the window.  The output auto-
correlogram image then represents an average spectral
similarity value between each cell and its neighbors.  The
result is easy to understand and provides a good estima-
tion of the spectral-spatial variability.  The weakness of
this filter is that it blurs the image and is sensitive to the
presence of boundaries between two spectrally different
materials within the window.  This is usually not a prob-
lem for the scenes that do not contain any human-made
structures.  The averaging of the SS values within the
window is similar to applying a Laplacian edge enhance-
ment omni-directional operator.  The common Laplacian
mask is composed of an eight in the center pixel location
with -1 weighting coefficients in the surrounding locations.
The SS-variability factor computed for the cell itself is 0
(if we are using the spectral angle mapper algorithm) and
the operator basically computes the average of the SS

Figure 1. An example of auto-correlogram framework for a 3x3 filter window.
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cal directional estimators to the filter window.  In this case,
in addition to the AC output discussed above, the algo-
rithm can generate an image that depicts the direction of
the strongest spectral similarity for every cell in the image.
All the cells that have no preferred direction of the SS-
coefficient and belong to a spectrally isotropic area will
get a 0 value, that refers to the absence of a dominant
direction.  However, image cells that belong to linear fea-
tures will receive a certain value that will indicate their
orientation.  This kind of filter might be used as a good
quality assurance test for an image, because it allows de-
tection of different kind of resampling and post-process-
ing algorithms applied to an image.

A completely different idea might be used to create
an auto-correlogram operator for detecting spectrally lo-
calized dissimilarities between bands.  In many cases it is
desirable to find out how the spectral variability of the
ground features changes with the wavelength.  A simple
implementation of such an operator might search for a
wavelength that maximizes the output of some local func-
tion F(x,y) for every image cell.  A variety of functions
might serve as local estimators of image variability:  abso-
lute maximum differences, local standard deviation, or
some other statistical measures.  The wavelength value
(or band number) that maximizes the function output for

values for the eight immediate neighbors.  The output of
this kind of auto-correlogram filter is visually very similar
to a typical Laplacian operator output.

The nonlinear spatial filters represent another im-
portant class of filters that might be used successfully in
the auto-correlogram design.  This class of filters does not
compute a linear summation of elements multiplied by
constant weights (filter kernel values).  Instead, they use
various other methods to process input cell brightnesses
and compute filter output.  The most popular non-linear
filter is definitely a median filter. It has been widely used
in noise and bad data removal algorithms.  The median
filter computes the median value of all cells within a filter
window and uses it as an output.  The drawback of using
these filters is their cumulative nature.  These filters might
help to visualize inter-band and inter-pixel relationships
that occur in some subset of the bands, but they fail to
detect a single band occurrence of a sensor problem or
some spectral phenomena.  The “cumulative” filters work
with statistical information and provide a good representa-
tion of overall spectral behavior within the scene.  Basi-
cally, they work as hyperspectral
edge detectors.  They are not in-
tended to locate subtle anomalies
or detect sensor artifacts.  For
these tasks we have to introduce a
different kind of filter that will ex-
hibit spectral and spatial selectiv-
ity.  One of the simplest ap-
proaches is to construct three auto-
correlograms for different parts of
the spectrum and then display
them as an RGB image.   How-
ever, this does not solve all the
problems and results still depend
on an arbitrary selection of wave-
length ranges.

An interesting set of possible
AC-operators might be constructed
by applying a filter function that
estimates how fast a spectral simi-
larity factor declines with the dis-
tance from the center of the win-
dow.  Another interesting set of
operators arises from applying lo-

Figure 2. Example of the application of average spectral angle auto-correlogram operator
to an agricultural scene. Wavelength range 0.5 - 1.1 micrometers.
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a given pixel is then stored in the output auto-correlogram.
The output depicts the spatial distribution of maximum
spectral variability of the hyperspectral image.  This kind
of operator is very sensitive to the calibration procedures

erties of the individual fields.  The auto-correlogram of
the agricultural field might be extracted out of the output
and displayed independently.  The contrast-enhanced auto-
correlogram may reveal the existence of patterns that might
correspond to the different soil or plant conditions within
a field.

Another possible application of the average spectral
angle auto-correlogram is an edge detection scheme that
works simultaneously on all image bands.  The thresholded
version (Figure 3) of the auto-correlogram might be used
as input to an automatic image vectorization procedure.
The advantage of using the whole set of image bands over
picking a single band for edge/ border vectorization is that
it unambiguously uses all available information and is not
dependent on selecting a correct image band.

However, constructing a hyperspectral edge detec-
tor is probably not a very practical use of the auto-
correlogram.  One of the most useful areas where auto-
correlograms might really produce interesting results is in
sensor defects detection and image quality assurance.
Everybody who has worked with the currently available
hyperspectral imagery has probably encountered problems

Figure 3. Thresholded version of the average spectral angle auto-correlogram.

applied to the image.  Application of
such  operators to the raw digital
numbers of the hyperspectral sen-
sors is not going to produce any
meaningful results without some sort
of calibration or normalization pre-
processing.

Results
We have applied different

kinds of auto-correlogram operators
to a number of hyperspectral scenes
produced by the AVIRIS sensor and
other commercial hyperspectral im-
agery.  The goal of our study was to
evaluate the potential value of the
approach for data visualization, im-
age quality inspection, and detection
of small anomalies.

The average spectral angle
auto-correlogram operator has been
applied to a low altitude AVIRIS im-
age (Figure 2) taken over the state

of auto-correlogram resembles the output of the Laplacian
edge detection filter.  For every pixel we computed an
average spectral angle between the cell and its eight im-
mediate neighbors.  The maximum values (that correspond
to maximum spectral differences) are concentrated along
edges between distinct ground features such as roads, dif-
ferent kinds of agricultural fields, water, and human made
structures.  The cumulative nature of the operator pro-
vides a good general overview of the spectral-spatial vari-
ability within the image and is relatively insensitive to the
noise or sensor problems in individual bands.  The output
auto-correlogram provides a visual clue to the texture of
the objects on the ground. Vegetated and bare soil fields
are easily distinguished by absolute values as well as by
image textures.  The highest variability is found in the
forested areas, partially because of their irregular texture
and a significant shadow effect. The output of the auto-
correlogram operator might be analyzed also on a local
basis, for example by inspecting spectral variability prop-

of Maryland.  This  is a typical agricultural scene contain-
ing a variety of  bare soil and vegetated fields, forested
areas, and a river.  It is easy to see that visually this kind
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Figure 4. The directional auto-correlogram operator applied to
the low-altitude AVIRIS image that has been geo-rectified using
a nearest neighbor resampling.

by constructing a directional auto-correlogram operator
that depicts the direction of strongest spectral similarity
for every cell in the image.  We have constructed an auto-
correlogram operator that finds for every image cell a most
spectrally close neighbor (within the processing window
centered around the current cell) and checks a similarity
threshold.  If spectral similarity is within a given threshold
range this pixel is considered to have a significantly similar
neighbor.  The relative position of the similar cell is then
converted to one of the four or eight possible directions
and the output auto-correlogram cell is marked with this
value. If the closest spectral similarity value is below a
user-specified threshold, then such cell is considered to
have no preferred direction and it is appropriately marked
in the output.  One of the possible ways to define a threshold
is to use the local standard deviation of the spectral simi-
larity as a basis for the value.  We applied such a direc-
tional auto-correlogram operator to the low-altitude AVIRIS
scene taken over agricultural fields of the Salinas Valley
(Figure 4).

This low-altitude AVIRIS image has been post-pro-
cessed in order to remove a distortion typically associated
with the low-altitude scan-line hyperspectral images.  It
has been geo-rectified and resampled using a nearest-neigh-
bor resampling technique.  A significant amount of new
image cells that are just duplicates of their neighbors have

associated with the sensor or registration
system malfunctions.  In many cases such
image degrading artifacts occur in some
small subset of the bands and appear on
the image in some regular geometrical
shapes.  The typical sensor errors include
change in the signal amplitude, excessive
noise, or even complete loss of the image
in some spectral bands.  More interesting
artifacts are introduced by registration
systems including spatially misplaced por-
tions of images.  Some post-processing
operation such as geo-rectification is also
a possible source of systematic errors that
might significantly affect the quality of
further hyperspectral image analysis and
classification.  Sometimes, if the detailed
post-processing history of the image is not

Figure 5. “Maximum spectral difference” auto-correlogram for the portion of AVIRIS
image taken over Cuprite site.

available, it is important to screen the data for possible
systematic errors or the presence of artificially shaped spec-
tral anomalies.  Detection of image resampling and the
actual resampling pattern might also prove to be valuable.

Detection of spatial resampling applied to the image
is a relatively simple task and might be efficiently achieved
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been introduced in the image.  The set of nearly horizon-
tal and diagonal lines are actually a pattern of the resampling
procedure applied to the image.  Each of the black cells
exhibits unusually high spectral similarity with one of its
neighbors (in this particular case of nearest-neighbor
resampling, cells are identical to each other).  The direc-
tional auto-correlogram for the original image does not
contain any of those patterns and contains a very small
amount of spectrally similar cells.  This is a good illustra-
tion of how an auto-correlogram might find and reveal
statistical and functional relationships that exist in the im-
age.  This approach might be used also in the case when it
is necessary to restore an original unprocessed image from
the resampled one, but the original resampling map is lost
or not available.  The drawback of this operator  is that it
does not allow us to determine the exact position of the
original cells, because we do not have a basis to distin-
guish the newly introduced cells from the original ones.
Both kinds have high similarity values with each other and
no signs of being original.  This consideration limits the
accuracy of the method to ± 1.

The directional auto-correlogram is effective for de-
tecting patterns that are not localized to a few individual
bands but occur in most bands of the image.  A significant
number of defects in hyperspectral images actually occur
within a single band and might call into question all further
processing results with that data.  Figure 5 shows an ex-
ample of the application of a maximum difference auto-
correlogram operator to a portion of the high-altitude
AVIRIS scene taken over Cuprite, Nevada.  Some of the
hyperspectral image artifacts might be detected by finding
for every image cell a wavelength (band) that maximizes
differences between the cell and its neighbors.  The auto-
correlogram output then may contain two possible types
of images:  absolute maximum difference within the win-
dow and a wavelength (band number) where this differ-
ence was recorded.  When such a simplified operator was
applied to the Cuprite scene, it detected some regular geo-
metrical shapes in the both types of auto-correlogram im-
ages.  The wavelength image allowed us to quickly pin-
point the band number 129 (1.573 micrometers) respon-
sible for these problems.  This approach still does not
guarantee that every kind of single-band sensor defect might
be identified automatically.  Besides finding sensor prob-
lems, the detection of the wavelengths where image cells
exhibit the most variability or some specific behavior is
also useful for general scene understanding, because it
provides some initial clues about where the image infor-

mation is and how it is distributed across the bands.  The
atmospheric absorption bands are a significant source of
noise and generally should be excluded from processing.
A great variety of auto-correlograms might be constructed
by selecting a different variability criterion or function al-
lowing us to adjust the algorithm to different problems
and hyperspectral data sources.

Conclusion
A new, easily implemented approach for visualizing

hyperspectral images has been demonstrated.  The pro-
posed auto-correlogram method can be easily modified to
suit a great variety of quantitative processing and analysis
needs.  The basic idea, elaborated in a collection of differ-
ent algorithms, is to explore how spectral or other proper-
ties of each cell in the image differ from some subset of its
neighbors.  The output of all the algorithms is always an
image that depicts the spatial distribution of the explored
phenomenon.  A further extension of visualization tech-
niques that use the concept of the auto-correlogram is an
RGB or RGBI display of a number of different auto-
correlograms where each correlogram type is responsible
for either the red, green, blue or intensity channel.  The
application of auto-correlograms to sensor defect detec-
tion and general scene understanding has been demon-
strated using publicly available hyperspectral imagery.  All
of the algorithms were implemented inside the hyperspectral
module of TNTmips, an advanced GIS and image pro-
cessing system.
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