

TNTmips

Geospatial Analysis for the Development of Your Geological Resources

TNTmips is a low-cost, integrated software package for your organization's use and management of all its spatial information at all levels: from the desktop to the enterprise.

TNTmips provides the tools needed for your detailed analysis

of image, terrain, and a wide variety of other spatial information for mineral exploration and geologic mapping, in the field or office. As your projects progress and expand, TNTmips can be used to take them all the way through to the preparation and publication of local, regional, or geological maps.

Mineral, Oil, and Government Organizations That Have Already Purchased TNTmips

ODEBRECHT Mining Services

ARGENTINA

GAMSA (Gencor)

Provincial Director of Mining

AUSTRALIA

Advanced Magnesium Technologies

Anglogold Australia

Billiton

CRA Exploration

DEMs

Exploration and Mining (CSIRO)

Geophysical Imaging Services

Geo Mapping Technologies

Kinhill Engineers

Mt. Leyshon Gold Mines

Newmont Mining

Normandy Exploration

Normandy Poseidon

North

North Flinders Exploration

NSW Geological Survey

Orpheus Geoscience

Queensland Metals

Rio Tinto Exploration

Spectrascan

Stockdale Prospecting

Wakelin Associates

BELGIUM

Bureau of Geological Consultancy

BOLIVIA

GeoPlus

Petrobras Bolivia

BOTSWANA

Tinto Botswana Exploration

BRAZIL

Anglo American

Barrick do Brazil Mineracao

Empresa Minera

IAMGOLD Brazil

Sopemi

TVX Gold

CANADA

IAMGOLD Canada

INCO Exploration & Technology

Kennecott

Orvana Minerals

TVX Gold

Anglo American

Asarco Exploration Chile

BHP Billiton

Center Investigation Minerals

Codelco

Empresa Minera de Mantos Blancos

Phelps Dodge Exploration

Placer Dome

SERNAGEOMIN

TVX Gold

CHINA

BHP Billiton China

ECUADOR

Gatro Ecuador Minera (GEMSA)

IMAGOLD Ecuador

Geological Survey of Finland

Metsakartoitus

Outokumpu Mining

Polar Mining

FRANCE

Hexamines

Rio Tinto Zinc

Total Oil

GREECE

Institute Geologic Mineral Exploration

ICFL AND

EKRA Geological Consulting

Geology and Mining, Ind. Dir.

INDONESIA

Lemigas R&D for Oil and Gas

CHKON

IRELAND

Rio Tinto Zinc

Geological Survey of Japan Japan Oil, Gas and Metals

Metal Mining Agency of Japan

MINDECO

Mitsui Mineral Dev En

Mitsui Oil Exploration

Nittetsu Mining

KAZAKHSTAN ALTYN-TAS

Ministry Mining and Exploration

Mexicana de Cobre Minera Kennecott

NAMIBIA

Anglo American

Erongo Mining

Rio Tinto Namibia Rossing Uranium

PAPUA NEW GUINEA

Dept of Mining & Petroleum

Highlands Gold

Newmont Exploration

Billiton Peru

Instituto Geologico, Memeroy Metalugico THAILAND

PHILIPPINES

Philex Mining

PORTUGAL

Rio Tinto Finance & Expl.

RUSSIA

Aerogeophysica

CRRU

SHANECO

SOYUZMORGEO

Geocomplex

SOUTH AFRICA

Anglo American

Anglo American Prospecting

Anglogold Ashanti

Anglovaal

AOC

BHP Billiton

Central African Gold

COMRO Contract Geological Services

Mining Technology (CSIR)

DeBeers

DeBeers Marine Dow South Africa

Gencor

GENMIN

Gold Fields

Lonmin Platinum

MSA Geoservices O'okiep Copper

Rand Quest Syndicate

RandGold Resources Rio Tinto Exploration

ROC Mining

Shell Minerals

Teklogic TerraMare Remote Sensing

TOPAC

Trans Hex Group

Trojan Exploration

Vereeniging Refractories

Repsol Exploration

Riomin Exploraciones

Riomin Iberica

SWEDEN Swedish Geological

TANZANIA

Ministry of Mines

Geologic Survey Division Mineral Resources Development

Maden Tenik Arama Genel Mudurlugu

Rio Tinto Zinc RioTur Madencilik

Turkish Petroleum (TPAO)

UNITED KINGDOM

BHP World Exploration Grant Tensor

HOH Oilfield Services

Nigel Press Associates Petro-Canada

Ranger Oil

Reynolds Geo-Sciences

Rio Tinto Zinc

Applied Geology

ASARCO Autodyne

Gibson Consulting

Integrated Geoscience & Engineering

Intrasearch Kennecott Exploration

La Minerals

Orvana Resources Placer Dome

Silverthorn Exploration

Union Texas

USGS

Western Mining ZAMBIA

> Independence Gold Mining Minerals Resources Prospecting Ventures

Zamanglo Prospecting **ZIMBABWE**

Anglo American

Rio Tinto Zimbabwe

Sample Script

Catchment Analysis for Locating Ore Deposits

Regional surveys of stream sediment geochemistry are a major tool in exploration for mineral resources. Well-chosen sampling locations along major and tributary streams allow reconnaissance characterization of large areas and detection of anomalous elemental concentrations that could signal the presence of an ore body. The SampleCatchment script developed by MicroImages provides initial geospatial processing of geochemical datasets with hundreds or thousands of sample points and creates products that can be used as input for further geospatial and statistical analysis. The script uses a digital elevation model to delineate the upstream watershed catchment area for each sampling point and transfers the point attributes to the appropriate catchment polygons (see the color plate entitled Sample Script: Mapping Catchment Areas for Sample Points). Multiple samples within a single watershed generate subcatchments that are attributed to identify the number and identity of adjacent upstream and downstream catchments. The composition of each sample is influenced by all upstream subcatchments, so each catchment is also attributed with the total area of all contributing subcatchments.

Catchments theme-mapped by copper concentration (ppm) in geochemical stream sediment samples taken at locations marked by black dots. Portion of a 26,000 square kilometer area with over 1200 sample points processed using the SampleCatchments script. Box outlines area shown in illustrations below.

The illustrations on this page provide a hypothetical example of how geospatial analysis of the sample catchments in TNTmips can be used to help solve one of the main interpretive challenges with geochemical data, the identification of anomalous concentrations. Background values of each element, such as copper, can fluctuate from catchment to catchment depending on the relative proportions of different rock types exposed in the contributing area, even in the absence of ore bodies. In order to predict background values of copper, the Polygon Properties process was used to overlay the catchments with a geologic map and determine for each subcatchment the areal extent and percentage of different rock units. A geospatial script (GeolUnitArea, excerpted on the opposite side of this page) was then used to identify for each catchment all of its contributing catchments and to sum the rock unit areas over those catchments. The resulting table of copper concentrations and unit percentages was used in a statistics program to perform a multilinear regression to compute a predicted copper concentration and residual for each catchment. After reimport to TNTmips, the residuals were then weighted by total contributing catchment area using a computed field and theme-mapped to reveal two catchments with anomalously high copper concentrations within the test area.

Sample Tool Script

Measure Strike/Dip of Geologic Features

The patterns traced across the landscape by layered rock units provide key evidence about surface and near-surface geologic structure. Geologists can map these surface features remotely using aerial or satellite images, but in order to quantify the structural geometry, they need measurements of the strike and dip (measures of 3D orientation) of the rock layers at many locations. This Tool Script enables geologists to measure and record the strike and dip of bedding or other map-scale planar features (such as joints, faults, dikes, and others) using a reference image overlaid on an elevation raster in the View. Key portions of the script are excerpted on the opposite side of this page. The script solves the classic "3-point problem" of structural geology: given the x-y-z coordinates of three non-colinear points on a plane, compute the strike and dip of the plane.

In the Tool Script's default Add mode, you use a standard polygon tool provided by the script to indicate in the View window the locations of the three required points (as triangle vertices) on a planar geologic feature. The script reads the elevation for each point from the elevation raster (which must be the first layer in the group), determines the corresponding plane, computes its strike azimuth, dip angle, and dip azimuth, and shows these values in the script's control window. The script also computes the outcrop trace of the computed plane over the terrain surface in the vicinity of the measurement point and draws this trace in the view. Comparing this trace to the local outcrop pattern shown by the reference image provides you with a visual quality-control assessment of the accuracy of the computed orientation of the plane. The polygon tool remains active to allow you to adjust the triangle vertices, if necessary, yielding a revised set of orientation values and a new outcrop trace. When you accept the orientation measurement, a point element is added to the designated Strike/Dip vector object and the orientation values are stored in an attached record in the associated point database. These points are also automatically styled by CartoScript with the appropriately-

oriented and labeled symbol for the strike and dip of bedding. The Tool Script can be revised easily to reference a different CartoScript for styling symbols for other planar geologic features.

CartoScripts for various geologic map features are available for free download from:

www.microimages.com/ freestuf/cartoscripts/

In Add mode, use the polygon tool to draw a triangle on the desired planar feature (above left). Use the Line/Polygon Edit Controls (left) to adjust the triangle if needed, then press [Apply] or press the right mouse button. The computed values for the plane are shown in the Tool Script's control window (right) and the outcrop trace is drawn in the View in the selected color (above right). Press [Accept] on the control window to

store the point and its data.

Measurement locations are added as point elements to a vector object and automatically styled using the appropriatelyoriented and labeled strike and dip symbol from an accompanying CartoScript.

The Tool Script's control window provides View, Add, Edit, and Delete modes.

The outcrop trace line for each measurement location is also added to a separate vector object with your selected line color. In the Tool Script's View mode, you can left-click on any strike-dip symbol to select it and use the Accept button on the Tool Script's control window to toggle the point's outcrop trace on or off. In this manner you can turn on and view several outcrop traces simultaneously. These computed outcrop traces can help you trace outcrop patterns and contact positions through areas of poor exposure (due to vegetation or soil cover) that might surround your measurement points.

The Tool Script's Edit mode allows you to select and edit existing strike-dip measurements. Selecting a point in this mode reactivates the polygon tool with its former vertex locations so that you can adjust its position and compute revised orientation measurements and a revised outcrop trace. You can also delete points and their accompanying outcrop traces using the Tool Script's Delete mode.

In the Tool Script's View mode, you can select one or more data points and turn on their outcrop traces for mutual comparison and to help map outcrop patterns.

Suppressing Vegetation in Multispectral Images

MicroImages has created an SML script that automates processing of multispectral images to suppress the expression of vegetation for geological and soil mapping applications. The script, devegX.sml, implements a "forced invariance" methodology developed by NASA researchers* at the Jet Propulsion Laboratory. Near-infrared and red image bands are used to estimate spatial variations in vegetation abundance. Vegetation suppression can be applied to these bands and to other image bands you select. The script determines the statistical relationship between the values in each band and the vegetation index. Band values are then adjusted so that the average band value for each index level is uniform across all vegetation index levels.

Color displays of Landsat Thematic Mapper images with RGB = Band 7, Band 4, Band 2. Vegetated areas appear green.

canopy vegetation, such as arid and semi-arid terrains, where many image cells include both vegetation and bedrock or soil. Both bedrock outcrop patterns and the overall contrast of nonvegetative materials are enhanced.

In addition to the adjusted image bands, the script produces a vegetation index raster and, for each devegetated band, a

vegetation index raster and, for each devegetated band, a raster scatterplot of band versus vegetation index values and a graph (CAD object) of the smoothed band average versus index values that are used to rescale the band.

The forced invariance method works well in areas of open-

The devegX.sml script is available for free download from: www.microimages.com/freestuf/smlscripts.htm

Same image areas and band combination after vegetation suppression by devegX.sml. Bedrock outcrop patterns in vegetated areas are much clearer.

Spring Mountains, southern Nevada, USA. Width of scene is 14.3 kilometers.

Inyo Mountains, eastern California, USA. Width of scene is 13.7 kilometers.

*Crippen, Robert. E. and Blom, Ronald G., 2001, Unveiling the Lithology of Vegetated Terrains in Remotely Sensed Imagery, Photogrammetric Engineering & Remote Sensing, Volume 67, No. 8, pp. 935-943.