
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • August 2010

Export 3D Cross-Sections to Google Earth
Sample Script

The KMZ files produced by the SML script described here
include KML animation code to raise the cross-sections
from their subsurface position (where they are hidden
below Google Earth’s terrain) to a position above the terrain
surface. The top illustration shows the Google Earth view
with a single geologic cross-section partially raised and still
intersecting the terrain, while the bottom illustration shows
the same section raised to its highest position. A custom
geologic map tileset produced separately in TNTmips is also
shown in this view. The animation control automatically
provided by Google Earth lets the user “play” the animation
or drag the slider to manually position the sections at any
intermediate elevation.

Google Earth view of four geologic cross-sections
exported together using the sample SML script, along
with a geologic map tileset produced separately in
TNTmips. The script packages the section image files,
COLLADA models, and KML code for all of the
exported cross-sections within one KMZ file.

Geologic cross-sections and seismic profiles can be georeferenced with 3D
control points in TNTmips to allow these objects to be displayed in 3D in
their correct positions and orientations. The resulting manifold georeference
includes 3D control points connected to form a triangular mesh to define a
projective surface (see the Technical Guides entitled Georeferencing Mani-
fold Surfaces and Manifolds in 3D Views). MicroImages has created a
script using the TNT geospatial scripting language (SML) that automates
the export of one or more manifold 3D cross-section objects to a KMZ file.
This allows the section or sections to be viewed immediately in 3D in Google
Earth in their correct geographic positions and orientations. This script,
ExportMultiSectColladaKMZ.sml, is excerpted on the reverse of this page.
Google has adopted the COLLADA file format (http:www.khronos.org/
collada/) as the medium to allow custom 3D models to be viewed in Google
Earth. A COLLADA file representing a geologic cross-section specifies the
3D projective surface (triangulated position mesh constructed from the TNT
3D control points), references the section image (a PNG image file), and
contains a mapping of these image coordinates to the vertices in the posi-
tion mesh. A KML file is used to provide Google Earth with the geographic
position and orientation of the COLLADA models. The sample SML script
creates a COLLADA file and corresponding PNG image file for each selected
cross-section, creates the KML file that positions these models, and pack-
ages all of these products in a single KMZ file (ZIP file with a .kmz file
extension) for easy use in Google Earth.
Both COLLADA and KML files are XML structured text. SML includes
classes that make it easy to read, modify, and write XML-formatted text, as
shown in the script excerpts on the reverse. The sample script contains
template COLLADA and KML files as text strings; these templates are read
into memory and modified as needed before being written to the output.
SML also includes classes to access control point coordinates and informa-
tion on hard edges and triangulation boundaries. This information allows

the manifold trian-
gulation to be
faithfully recreated
in the COLLADA
file.
Google Earth does
not allow viewing
of objects below
the Google Earth terrain surface (other than by toggling off the terrain, flattening
it to sea level). In order to allow viewing of the COLLADA cross-section models
with the Google Earth terrain, the SML script creates KML time-space animation
code that allows the user to interactively raise the sections above the terrain from
their natural subsurface positions. The script automatically analyzes the eleva-
tions of all cross-section control points to set the animation elevation range so
that all sections are raised in concert and the maximum height raises all section
bases clear of the Google Earth terrain.

This sample script is available for download along with the following
sample products illustrated on this page:

Geologic map Google Earth Super Overlay: CRgeolmap.zip
Single-section KMZ file illustrated above: SectionC.kmz
Multiple-section KMZ file illustrated to the left: CastleReefSections.kmz

www.microimages.com/downloads/smlscripts.htm

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • August 2010

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for scripts
and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

Georeference Input Object view
of a geologic cross-section
raster with manifold georefer-
ence. The SML script described
here processes the manifold
control points to recreate this
triangulation in a COLLADA file
for 3D display in Google Earth.

Excerpts from ExportMultiSectColladaKMZtrack.sml

ExportMultiSectColladaKMZ.sml:
KMZ useable in all Google Earth versions

ExportMultiSectColladaKMZtrack.sml:
KMZ file useable in Google Earth 5.2 and later.
Smoother animation using <gx:Track> element.

NOTE: Two versions of the cross-section export script are
available. They differ in the method used to animate the cross-
sections and limit use of the exported KMZ file to specific
Google Earth versions:

err = daedoc.Parse(dae$);
if (err < 0) { PopupError(err); break; }

colladaRootNode = daedoc.GetRootNode();

node = colladaRootNode.FindChild("asset");
node1 = node.FindChild("created");
node1.SetText(dt$);
node1 = node.FindChild("modified");
node1.SetText(dt$);

node1 = node.FindChild("unit");
node1.SetAttribute("name", unit$);
node1.SetAttribute("meter", sprintf("%.4f", unitConvToMeters));

node = daedoc.GetElementByID("Xsect-image");
node1 = node.FindChild("init_from");
node1.SetText(pngFilepath.GetName());

arraycount = numPts * 3;
node = daedoc.GetElementByID("mesh1-geometry-position-array");
node.SetAttribute("count", NumToStr(arraycount));
node.SetText(xyzString);

node1 = node.GetParent();
node2 = node1.FindChild("technique_common");
node3 = node2.FindChild("accessor");
node3.SetAttribute("count", NumToStr(numPts));

arraycount = numPts * 2;
node = daedoc.GetElementByID("mesh1-geometry-uv-array");
node.SetAttribute("count", NumToStr(arraycount));
node.SetText(uvString);

node1 = node.GetParent();
node2 = node1.FindChild("technique_common");
node3 = node2.FindChild("accessor");
node3.SetAttribute("count", NumToStr(numPts));

node = daedoc.GetElementByID("mesh1-geometry");
node1 = node.FindChild("mesh");
node2 = node1.FindChild("triangles");
node2.SetAttribute("count", NumToStr(numTriangles));

node3 = node2.FindChild("p");
node3.SetText(pString);

class STRING daefile$ = dir$ + "/" + xsecName$ + ".dae";
printf("\nDAE filepath = %s\n", daefile$);
daedoc.Write(daefile$);

class FILEPATH daeFilepath(daefile$);

parse the COLLADA file template and get the root node

set created and modified dates, units, and scale factor

set the output PNG file as the library image

set the position mesh count and array

set the count for the position array accessor

set the texture mesh count and array

set the count for the uv array accessor

set the material and primitive for the triangles element

write out the COLLADA file

node = model.NewChild("ResourceMap");
node1 = node.NewChild("Alias");

node1.NewChild("targetHref", "files/" + xsecName$ +".png");
node1.NewChild("sourceHref", "files/" + xsecName$ +".png");

add info to the KML structure for this section

create <Document> element for this section in <Folder>

document = folder.NewChild("Document");
node = document.NewChild("name");
node.SetText(xsecName$);

create <Placemark> for the cross-section with name
placemark = folder.NewChild("Placemark");
placemark.NewChild("name", xsecName$);

create <gx:Track> element for <Placemark> and set <altitudeMode>

track = placemark.NewChild("gx:Track");
track.NewChild("altitudeMode", "absolute");

create <Model> element in <gx:Track>

model = track.NewChild("Model");
model.SetAttribute("id", sprintf("model%d", k));

create <Orientation> element for <Model>

node = model.NewChild("Orientation");
node.NewChild("heading", NumToStr(angleToNorth));
node.NewChild("tilt", "0");
node.NewChild("roll", "0");

create <Scale> element for <Model>

node = model.NewChild("Scale");
node.NewChild("x", "1.0");
node.NewChild("y", "1.0");
node.NewChild("z", "1.0");

create <Link> element for <Model>

node = model.NewChild("Link");
node.NewChild("href", "files/" + xsecName$ + ".dae");

create <ResourceMap> element for <Model>

