
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

Using Regions in a Pipeline
Geospatial Scripting

SOURCE_RVC

FILTER_CROP

TARGET_RVC

Input image

SOURCE_REGION

Annotated diagram of pipeline to mask and crop an image
using a region created from vector polygons (see
PipelineCropAndMaskFromRegion.sml on reverse).

Construct with region,
source image, and
image’s transformation
to map coordinates;
Initialize

Construct source;
Initialize

choose Raster
to crop and mask

choose vector object
with polygons outlining
areas to processes

Construct with mask filter
and bounding extents of
region;
Initialize

Construct target with crop
filter as input stage;
Initialize

call Process() method on target

choose output
raster (Project File
and object name)

A region is a spatial object that is used to outline simple or complex
areas of interest. TNT geospatial scripts that implement an image
processing pipeline can use region objects to mask an image and/or
to crop an image to the bounding extents of the region. The region
used for such operations can be input to the script, obtained from
another image in the pipeline, or computed from a geometric object
(such as vector polygons). The illustration to the right diagrams a
sample script (PipelineCropAndMaskFromRegion.sml, excerpted
on the reverse) that computes a region from polygons in a vector
object you select and uses this region to mask and crop an image
you select.

To use a region in the pipeline, the script constructs an instance of
class IMAGE_PIPELINE_SOURCE_REGION using the region and
(as reference) the input image source. The resulting region source
has the dimensions of the source image and is registered to it by
means of its georeference. (If the vector object used to create the
region has a different coordinate reference system [CRS] than the
reference image, the script reprojects the derived region to the im-
age CRS before creating the region source.) The
SOURCE_REGION is used as input to the mask validity pipeline
filter, which masks out the portion of the input image outside of the
region’s closed outlines by creating a null mask for the image. The
SOURCE_REGION class also has a method to obtain the bound-
ing rectangular extents of the region (i.e., the bounding extents of
the aggregate of all closed outlines in the region) in image coordi-
nates. The script uses these rectangular bounding extents as input
to the crop pipeline filter to crop the image.

All pipeline stages are also provided with a class method to obtain
the extents of that stage as a region object. This method is used in
the sample script to obtain a region from the image source and test
whether the region computed from the input vector polygons is con-
tained within the image extents. If it is not, the script reports an
error and exits.

This sample script could be modified easily to add filters to per-
form additional processing to the image, such as changing its CRS,
applying a sharpening filter, or changing cell size. The sample script
entitled PipelineNDVIfromTIFF_CropAndMaskFromRegion.sml
shows how region mask and crop operations can be grafted onto a
more complex image processing pipeline.

FILTER_MASKVALIDITY

get georeference
and check for valid

coordinate
reference system;

if none, report
error and exit

script

get coordinate
transformation

from image to its
defined CRS

check for polygons and
for valid georeference;

if none, report error
and exit script

get coordinate reference
system (CRS)

transform region to
same CRS as image

(if necessary)

get extents of
image source
as a region

check that bounding
region of polygons is

contained within
image region; if not,
report error and exit

script

convert polygons
to region

Construct with image,
source & region source;
Initialize

get rectangular
bounding extents
of region in image

coordinates

A sample source image is shown to the left (color-composite
with UTM coordinate reference system) with overlay of vector
polygons (transparent yellow fill) with a geographic CRS. The
sample script converts these polygons to a region, transforms
the region to the image CRS, and creates a SOURCE_REGION
for use in a pipeline to mask and crop the image. The resulting
target image with UTM CRS is shown below with a black border
added to indicate its extents. White areas of the target in this
illustration are null-masked.

Insert additional
filters here to
further process
the image

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

Excerpts of Pipeline Script to Crop and Mask an Image Using a Region from Vector Polygons
(PipelineCropAndMaskFromRegion.sml)

PIPELINE FILTER TO CROP the image to the extents of the region

 PIPELINE TARGET: set up the target for the pipeline

EXECUTE pipeline process

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for
scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

class IMAGE_PIPELINE_TARGET_RVC target(filterCrop, rastOutObjItem);
err = target.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Initialized target.");

target.Process();
print("Done.");

class IMAGE_PIPELINE_FILTER_CROP filterCrop(filterMask, regExtents);
err = filterCrop.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Initialized image crop filter.");

class RECT regExtents;
regExtents = sourceReg.GetRegionExtents();
printf("Minimum values of cropping rectangle from polygons: x = %.2f, y = %.2f\n",

regExtents.x1, regExtents.y1);
printf("Maximum values of cropping rectangle from polygons: x = %.2f, y = %.2f\n",

regExtents.x2, regExtents.y2);

Get the rectangular extents of the region in image coordinates to
use to crop the source image. These are the extents of the
region used to create the region source, not those of the image
used as its reference.

class IMAGE_PIPELINE_FILTER_MASKVALIDITY filterMask(sourceImg,
sourceReg);

err = filterMask.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Initialized image mask filter.");

PIPELINE FILTER TO MASK PORTIONS OF THE IMAGE;
mask area outside the region created from the vector polygons

class IMAGE_PIPELINE_SOURCE_REGION sourceReg(RegFromVect,
imgToCRS, sourceImg);

err = sourceReg.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else {

print("Initialized region source.");
printf("Size of region = %d lines, %d columns\n", sourceReg.GetTotalRows(),

sourceReg.GetTotalColumns()); }

PIPELINE SOURCE FOR REGION CREATED FROM THE
VECTOR POLYGONS; construct using TRANS2D_MAPGEN
with coordinate transformation from source image to its CRS.
Use source image as a reference so the "image dimensions"
of the region source match, enabling the region source to be
used as a mask in the MASKVALIDITY filter

if (imgReg.TestRegion(RegFromVect, "FullInside")) {
print("Image region contains vector extents."); }

else {
print("Input vector is not contained within the source image. Exiting now.");
Exit(); }

CHECK THAT REGION FROM VECTOR IS
CONTAINED WITHIN IMAGE REGION

class REGION2D imgReg;
err = sourceImg.ComputeGeoreferenceRegion(imgReg);
if (err < 0)

ReportError(_context.CurrentLineNum, err);

GET EXTENTS OF THE IMAGE SOURCE AS A REGION

if (vectCRS.Name <> imgCRS.Name) {
printf("Converting region to image CRS: %s\n", imgCRS.Name);
RegFromVect.ConvertTo(imgCRS); }

class REGION2D RegFromVect = ConvertVectorPolysToRegion(polyVect,
GetLastUsedGeorefObject(polyVect), polynums, j);

CONVERT VECTOR POLYGONS TO A REGION; if vector has
different coordinate reference system from image, reproject region

vectCRS = vectGeoref.GetCoordRefSys();
printf("Vector coordinate reference system = %s\n", vectCRS.Name);

class RVC_VECTOR polyVect; class RVC_OBJITEM vectObjItem;
class RVC_GEOREFERENCE vectGeoref; class SR_COORDREFSYS vectCRS;

if (polyVect.$Info.NumPolys == 0) {
print("Vector object contains no polygons; exiting now.");
Exit(); }

err = polyVect.GetDefaultGeoref(vectGeoref);
if (err < 0) {

ReportError(_context.CurrentLineNum, err);
print("Polygon vector must be georeferenced and is not; exiting now.");
Exit(); }

DlgGetObject("Choose vector object with polygons outlining areas to process:",
"Vector", vectObjItem, "ExistingOnly");

polyVect.Open(vectObjItem, "Read");

check for georeference

check for polygons

CHOOSE VECTOR OBJECT WITH POLYGONS
TO INDICATE AREAS TO PROCESS

class TRANS2D_MAPGEN imgToCRS = georefImg.GetTransGen();

Get coordinate transformation from image to its defined CRS

class IMAGE_PIPELINE_GEOREFERENCE georefImg;
georefImg = sourceImg.GetGeoreference();

class SR_COORDREFSYS imgCRS = georefImg.GetCRS();

if (!imgCRS.IsDefined()) {
print("Image is not georeferenced; exiting now.");
Exit(); }

else if (imgCRS.IsLocal()) {
print("Image has local engineering georeference; exiting now.");
Exit(); }

else printf("Image coordinate reference system = %s\n", imgCRS.Name);

Get georeference and coordinate reference system from the image

class IMAGE_PIPELINE_SOURCE_RVC sourceImg(rastInObjItem);
err = sourceImg.Initialize();
if (err < 0)

ReportError(_context.CurrentLineNum, err);
else {

numeric numLins, numCols;
numLins = sourceImg.GetTotalRows();
numCols = sourceImg.GetTotalColumns();
print("Source image initialized.");
printf("Image size = %d lines, %d columns\n", numLins, numCols); }

PIPELINE SOURCE FOR IMAGE

class RVC_OBJITEM rastInObjItem;
DlgGetObject("Choose input raster:", "Raster", rastInObjItem, "ExistingOnly");

CHOOSE INPUT RASTER

only use polygons that are
not islands to make region

array numeric polynums[0];

for i = 1 to polyVect.$Info.NumPolys {
if (polyVect.poly[i].Internal.Inside == 0) {

ResizeArrayPreserve(polynums, ++j);
polynums[j] = polyVect.poly[i].Internal.ElemNum; }

array of non-island polygon numbers

