
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2007

Flight Planning
Sample Geospatial Script

After you enter the flight line spacing and buffer distance values in
the Flight Plan dialog window, press the Create Boundary button to
activate a polyline tool that you can use to draw the outline of the
flight area in the View. A Line/Polygon Edit Controls window opens
automatically with the tool to allow you to make adjustments to the
shape of the polygon if needed. When you have correctly placed
the boundary polygon, right-click or press the Apply button on the
Edit Controls window to accept and use it.

Pressing the Orientation Line button activates a line tool that
allows you to draw a straight reference line in the view to
indicate the flight line direction (its compass direction is shown
automatically by a pop-in ToolTip). Drag either end of the line
tool to adjust its position and direction, then right-click to
accept the line. This line is used as the reference line for
creating the set of parallel flight lines at the designated line
spacing. The end points of this orientation line can be any-
where inside or outside of the desired flight area, as all of the
flight lines the script creates are automatically extended to or
clipped at the specified buffer distance around the area
boundary.

Pressing the Compute Flight Lines button creates the buffer
zone (cyan in this illustration) around the boundary and the set
of flight lines (yellow). You can then save the flight lines,
boundary, and buffer boundary as separate vector or CAD
objects, and export the flight lines to a GPS Exchange (GPX)
file for use in navigation.

MicroImages has created a sample geospatial tool script that
provides an interactive automated procedure for laying out a
pattern of parallel, equally-spaced flight lines for aerial opera-
tions. This tool script can be added to 2D View windows in the
TNTmips Display process and TNTview, and can be saved with
a layout for use in an atlas in TNTatlas.
The Flight Planning tool script (excerpted on the reverse side of
this page) creates a set of parallel flight lines that completely
cover the designated target area with the specified direction and
line spacing. The script provides interactive tools for drawing
the target polygon in the View over any desired reference
geospatial data (such as a map or satellite image) and for draw-
ing a reference line to indicate the flight line direction. These
tools are activated by controls on a custom dialog window cre-
ated and opened by the script. You also have the option of
loading the area boundary from an existing vector, CAD, or
region object. The dialog provides fields for entering the flight

line spacing and a buffer distance to extend the flight lines around
the target area polygon. After these parameters and the bound-
ary polygon and reference direction line are set, pressing the
Compute Flight Lines button generates a buffer zone polygon
around the target area boundary and the parallel flight lines are

created and clipped to this buffer polygon. You can save the
resulting flight lines, target area boundary, and buffer boundary
in separate vector or CAD objects. The flight lines can also be
exported to GPS Exchange (GPX) format so the line data can
be imported by and used to control a GPS-based navigation
system.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • April 2007

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for
scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

Excerpts of Flight Planning Tool Script (FlightPlan.sml)
proc PolyLineActivate() {

LineTool.Managed = 0;
PolyLineTool.Managed = 1;
PolyLineTool.HasPosition = 0;
View.SetMessage("Draw polygon in view outlining the area boundary.");
}

proc OnPolyLineToolApply() {
class POLYLINE polyline;
polyline = PolyLineTool.GetPolygon();
polyline.AppendVertex(polyline.GetVertex(0));

class TRANSPARM ScreenToView = ViewGetTransViewToScreen(View, 1);
class TRANSPARM ViewToMap = ViewGetTransMapToView(View, crs, 1);

polyline.ConvertForward(ScreenToView);
polyline.ConvertForward(ViewToMap);

VectorAddPolyLine(vectorPoly, polyline);
PolyLineTool.HasPosition = 0;

LayerDestroy(vectorPolyLayer);
vectorPolyLayer = GroupQuickAddVectorVar(group, vectorPoly);
ViewRedraw(View);

orientationBtn.SetEnabled(1);
View.SetMessage("Press Orientation Line button to set direction of flight lines.");
}

proc LineActivate() {
PolyLineTool.Managed = 0;
LineTool.Managed = 1;
LineTool.HasPosition = 0;
View.SetMessage("Drag a line in the view in the desired flight line direction.");
}

proc OnLineToolApply () {
array numeric xpoints[5];
array numeric ypoints[5];

ClearVector(vectorLine);
ClearVector(vectorPoint);

class TRANSPARM ScreenToView = ViewGetTransViewToScreen(View, 1);
class TRANSPARM ViewToMap = ViewGetTransMapToView(View, crs, 1);

coordstart = TransPoint2D(TransPoint2D(LineTool.start, ScreenToView, 0),
ViewToMap, 0);

coordend = TransPoint2D(TransPoint2D(LineTool.end, ScreenToView, 0),
ViewToMap, 0);

xpoints[1] = coordstart.x; xpoints[2] = coordend.x;
ypoints[1] = coordstart.y; ypoints[2] = coordend.y;

VectorAddLine(vectorLine, 2, xpoints, ypoints);
LineTool.HasPosition = 0;
VectorAddPoint(vectorPoint, coordstart.x, coordstart.y);
VectorAddPoint(vectorPoint, coordend.x, coordend.y);

LayerDestroy(vectorLineLayer);
LayerDestroy(vectorPointLayer);
vectorLineLayer = GroupQuickAddVectorVar(group, vectorLine);
vectorPointLayer = GroupQuickAddVectorVar(group, vectorPoint);
ViewRedraw(View);

computeBtn.SetEnabled(1);
View.SetMessage("Press the Compute Flight Lines button to create flight lines.");
}

proc OnExport() {

class SR_COORDREFSYS latloncrs;
latloncrs.Assign("Geographic2D_WGS84_Deg");
class REGION2D layerregion = group.ActiveLayer.MapRegion;
layerregion.ConvertTo(latloncrs);
class RECT extents = layerregion.Extents;

class TRANSPARM MapToGeog;
MapToGeog.InputCoordRefSys = group.ActiveLayer.MapRegion.CoordRefSys;
MapToGeog.OutputCoordRefSys = latloncrs;

class FILE fOut;
fOut = GetOutputTextFile("c:/default.txt", "Select Text file", "gpx");

fwritestring(fOut, "<?xml version=\"1.0\"?>\n");
fwritestring(fOut, "<gpx\n");
fwritestring(fOut, " version=\"1.0\"\n");
fwritestring(fOut, " creator=\"MicroImages - http://www.microimages.com\"\n");
fwritestring(fOut, " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-

instance\"\n");
fwritestring(fOut, " xmlns=\"http://www.topografix.com/GPX/1/0\"\n");
fwritestring(fOut, " xsi:schemaLocation=\"http://www.topografix.com/GPX/1/0

http://www.topografix.com/GPX/1/0/gpx.xsd\">\n");

if (extents.x1 < extents.x2) {
minlon = extents.x1; maxlon = extents.x2;
}

else {
minlon = extents.x2; maxlon = extents.x1;
}

if (extents.y1 < extents.y2) {
minlat = extents.y1; maxlat = extents.y2;
}

else {
minlat = extents.y2; maxlat = extents.y1;
}

class STRING bounds$ = sprintf("<bounds minlat=\"%.6f\" minlon=\"%.6f\"
maxlat=\"%.6f\" maxlon=\"%.6f\"/>\n", minlat, minlon, maxlat, maxlon);

fwritestring(fOut, bounds$);

class STRINGLIST pointlist; class STRING point$, name$;
class POINT2D pt; class GEOREF georef = GetGeorefObject(vectorInitLine);

for i = 1 to NumVectorLines(vectorInitLine) {
for j = 1 to NumVectorPoints(vectorPoint) {

pt.x = vectorPoint.point[j].Internal.x;
pt.y = vectorPoint.point[j].Internal.y;

if (FindClosestLine(vectorInitLine, pt.x, pt.y, georef, 0.0001) == i) {
point$ = sprintf("<wpt lat=\"%.6f\" lon=\"%.6f\">\n",

MapToGeog.ConvertPoint2DFwd(pt).y,
MapToGeog.ConvertPoint2DFwd(pt).x);

pointlist.AddToEnd(point$);
}

}
pointlist.Sort();
for k = 1 to (pointlist.GetNumItems()) {

fwritestring(fOut, pointlist[k-1]);
name$ = sprintf(" <name>LINE%i #%i</name>\n", i, k);
fwritestring(fOut, name$);
fwritestring(fOut, "</wpt>\n");
}

pointlist.Clear();
}
fwritestring(fOut, "</gpx>\n");
fclose(fOut);
}

Procedure called when Boundary
button on dialog is pressed;
activates polyline tool.

Procedure called when user
right-clicks to accept the
field boundary polygon.

Procedure called when Orientation
button on dialog is pressed;
activates line tool.

Procedure called when user right-clicks
to accept the orientation line.

clear everything but boundary
polygon and buffer polygon

add line

add line to view

Procedure called when Export to
GPX button on dialog is pressed.

set CRS
for vector

write GPX header

determine bounding lat/lon

find points that lie on current line and add these points

output points in pointlist

step through each line

for all points

