
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • September 2004

Profile of Nearest Line
Sample GraphTip Script

The illustrations on this page show a GraphTip ex-
ample that executes automatically whenever the cursor
is near a vector line. The line nearest the cursor is
highlighted and a GraphTip pops-in automatically to
show an elevation profile computed along the line
using values from an elevation raster. Excerpts of
the Display Control Script that creates this GraphTip
are shown on the opposite side of this page, and the
complete script is available for download.
Creating GraphTips for your saved groups, layouts,
and atlases provides a data exploration capability that
is available automatically to anyone using the data.
A GraphTip can access and process data from sev-
eral layers in the view and pop-in a graphical
presentation of the information for the current cursor
position. It can even detect the nearest point, line, or
polygon in a vector layer and compute characteris-
tics of that feature from some other layer (or from an
object that is not currently part of the Group or Lay-
out). For example, a Graph tip could find the vector
polygon that encloses the cursor location, use that
area to determine some statistical properties of a ras-
ter layer or off-line raster object, and present a graph
of the result (such as a frequency histogram of eleva-
tion values from an elevation raster).

A GraphTip can include multiple graphic elements including text,
with each element independently positioned. In this example the
vertical and horizontal cross-hair lines indicate the position of the
cursor along the line in both distance and elevation.

In this example the position of the GraphTip is also varied
depending on the position of the cursor in the View in order to
prevent it from obscuring the highlighted line element.

This GraphTip obtains elevation values from a raster object
that is the bottom layer in the group, and highlights vector
lines in the top layer in the group. Intervening layers can
be turned off or on without affecting the operation of the
GraphTip, as shown by the photo layer turned on in this
illustration.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • September 2004

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

Script Excerpt for Line Profile GraphTip
 (LineProfileGraphTip.sml)

func OnViewDataTipShowRequest (
class GRE_VIEW view,
class POINT2D point,
class TOOLTIP datatip) {

datatip.Delay = 500;
local class POINT2D cursor = point;

local class TRANSPARM screenToView = ViewGetTransViewToScreen(view, 1);
local class TRANSPARM viewToMap =

ViewGetTransMapToView(view, vectorLayer.Projection, 1);
point = TransPoint2D(point, screenToView);
point = TransPoint2D(point, viewToMap);

local class POINT2D tmppoint0;
tmppoint0.x = 0; tmppoint0.y = 0;
tmppoint0 = TransPoint2D(tmppoint0, screenToView);
tmppoint0 = TransPoint2D(tmppoint0, viewToMap);

local class POINT2D tmppoint;
tmppoint.x = sqrt(128); tmppoint.y = sqrt(128);
tmppoint = TransPoint2D(tmppoint, screenToView);
tmppoint = TransPoint2D(tmppoint, viewToMap);

local numeric dist = computeDistance(tmppoint0, tmppoint);

local numeric lineNum =
FindClosestLine(lineVector, point.x, point.y, vecGeoref, dist);

if (lineNum == 0) return -1;

local class POLYLINE line = GetVectorLine(lineVector, lineNum);
line = convertObjectToMap(line);

vectorLayer.line.HighlightSingle(lineNum);
view.RedrawLayer(vectorLayer);

local numeric vertexNum = line.FindClosestVertex(point);

local class POLYLINE graphLine = constructGraphLine(line);

createGC();
drawGraph(graphLine, vertexNum);

local class POINT2D offset;
offset = computeOffset(line, view, cursor);
datatip.SetImageTip(imagedev, maskdev, offset);
return 1;

}

proc drawGraph (class POLYLINE graphLine, numeric vertexNum) {

drawGraphAxes(graphLine);

gc.SetColorRGB(200, 50, 50);
local class POINT2D linePoint = graphLine.GetVertex(0);
local class POINT2D graphPoint = transPointToGraph(linePoint, graphLine);
gc.DrawPoint(graphPoint.x, graphPoint.y);

local numeric i;
for i=1 to graphLine.GetNumPoints()-1 {

linePoint = graphLine.GetVertex(i);
graphPoint = transPointToGraph(linePoint, graphLine);

if (isNull(linePoint.y)) {
linePoint = graphLine.GetVertex(i+1);
graphPoint = transPointToGraph(linePoint, graphLine);
gc.MoveTo(graphPoint.x, graphPoint.y);
}

else gc.DrawTo(graphPoint.x, graphPoint.y);
}

local class COLOR horizLineColor, vertLineColor;
horizLineColor.red = 20;
horizLineColor.green = 20;
horizLineColor.blue = 80;
vertLineColor.red = 20;
vertLineColor.green = 20;
vertLineColor.blue = 80;
local class POINT2D graphCircle = graphLine.GetVertex(vertexNum);
graphCircle = transPointToGraph(graphCircle, graphLine);

gc.SetColorRGB(vertLineColor.red, vertLineColor.green,
vertLineColor.blue, 100);

gc.MoveTo(graphCircle.x, topGraphOffset);
gc.DrawTo(graphCircle.x, getHeight() - bottomGraphOffset);

gc.DrawTextSetColors(vertLineColor);
string dist = NumToStr(int(graphLine.GetVertex(vertexNum).x));
local numeric x, y;

if (graphCircle.x < (leftGraphOffset + gc.TextGetWidth(dist) + 1))
x = graphCircle.x + 1;

else x = graphCircle.x - gc.TextGetWidth(dist) - 1;

y = topGraphOffset + fontHeight;

gc.DrawTextSimple(dist, x, y);

if (!isNull(graphCircle.y)) {
gc.SetColorRGB(horizLineColor.red, horizLineColor.green,

horizLineColor.blue, 100);

gc.MoveTo(leftGraphOffset, graphCircle.y);
gc.DrawTo(getWidth() - rightGraphOffset, graphCircle.y);

gc.DrawTextSetColors(horizLineColor);
string elev = NumToStr(graphLine.GetVertex(vertexNum).y);
if(graphCircle.x > (getWidth() - rightGraphOffset - leftGraphOffset)/2) {

gc.DrawTextSimple(elev, leftGraphOffset+1, graphCircle.y-1);
}

else {
gc.DrawTextSimple(elev, getWidth() - rightGraphOffset -

gc.TextGetWidth(elev)-1, graphCircle.y-1);
}

}
}

predefined function called when
the cursor pauses triggering a
datatip action event

store the cursor position

get the cursor position in map coords

translate 16 pixel distance to
map projected distance

 get the line from the cursor position

if not close enough, don't display graph

highlight the line

get the closest vertex for display

get the line to graph - x-dimension is distance, y is elevation

create the graphics context to draw the graph to

draw the graph

compute Image tip
offset and display

plot out the axes first

procedure to draw the graph with the given polyline

set profile color and plot point zero

plot the rest of the
profile vertices

draw crosshairs
marking the point on
the graph nearest to
cursor

if null skip point and move to next

draw the
vertical line

draw label

set x position of measurement label

draw on right
draw on left

set y position of
measurement label

draw distance measurement label

draw horizontal line

set the line color

draw line

draw label

draw on left

draw on right

func class POLYLINE convertObjectToMap(class POLYLINE line) {
local class POLYLINE ret;
local class POINT2D obj, map;

local numeric i;
for i=0 to line.GetNumPoints()-1 {

obj = line.GetVertex(i);
map = ObjectToMap(lineVector, obj.x, obj.y, vecGeoref);
ret.AppendVertex(map);
}

return ret;
}

procedure to convert the polyline from obj to map coordinates

