
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • October 2004

The visual aspects of dynamic feature location are the focus of a companion color plate entitled Exploring District Services. The geodata
and their interaction in this sample SML Control Script are discussed here to help you further understand this example of dynamic feature
location. You can then incorporate this kind of interactive geospatial analysis into your projects. As stated in the companion plate,
displaying the schools assigned to every property location is only one of a myriad of possible applications for dynamic feature location.
So where the words “school” or “attendance area” are used, substitute the feature name and area appropriate for your application.

This sample application is a good example of interactive geospatial analysis whose speed and objective (reactive and automatic
response) require vector objects with full topology. This task would be difficult and slow to accomplish with CAD or shape-oriented
geodata. It uses seven coincident vector objects: three types of school attendance area polygon vectors (elementary, middle, and high
schools, illustrated below), three corresponding school building point location vectors (illustrated below), and a land ownership parcel
vector. In this example of dynamic feature location, none of the six school vector layers are directly displayed; they are used only by the
Control Script. A 1-foot resolution color orthophoto mosaic lets the user visually locate any property parcel of interest. This image layer
could be overlaid by other layers, such as a primary road network, to assist the user in locating a parcel.

As the cursor is moved over the image in the View, the Control Script detects the parcel when the cursor hovers over it for 0.5 seconds and
then displays the parcel boundary if the view scale is appropriate. It also confirms the address of the parcel by presenting it in a DataTip.
In this example, the school parcel outlines are displayed by the Control Script at map scales larger than 1:50,000 and the parcel outline
for the property beneath the cursor is drawn at scales greater than 1:15,000. Next the Control Script determines the location of the cursor
in each of the three overlapping school attendance area polygons. (Smaller scale values mean larger map scales.) It then locates the
corresponding school property in the parcels vector object, draws its outline if the map scale is appropriate, and accesses the three school
building location vector objects to draw their symbology into the view next to their parcel outlines. All this happens automatically in
the Control Script each time the cursor is moved without having to click or perform any other selection procedure as illustrated in the
associated color plate noted above.

This example of dynamic feature location permits the user to zoom in and out and explore the underlying spatial relationships of a
property of interest using the image layer, other reference overlays, and parcel boundaries. However, it could be modified to pan to,
center on, and display these same dynamic feature location results for any specific parcel by incorporating the Property Finder Tool
Script, which is described in the color plate of the same name.

Sample sections of the six school-related vector objects are presented below. The parcel boundary layer for this subarea is not shown
because it is very complex at the scale illustrated. To provide the context for the actual operation of this example of dynamic feature
location, Lincoln, Nebraska (population approximately 260,000) has 36 elementary schools, 11 middle schools, and six high schools.
Each time the cursor hovers over a parcel in this sample data, the complete Control Script evaluation and associated display appear in
about 0.5 seconds.

Using Overlapping Polygons

elementary school
locations

middle school
locations

high school
locations

elementary
attendance areas

middle school
attendance areas

high school
attendance areas

The six school-related vector objects referenced by
the Control Script are shown separately at the left and
together above. The parcels vector object is too
dense to be shown at this scale.

sample subset for illustration

Dynamic Geospatial Analysis

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • October 2004

Partial Script for Exploring District Services (schools.sml)
see back of plate entitled Exploring District Services for more of this script

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

numeric schoolPrclScl = 50000;
numeric mouselocPrclScl = 15000;
numeric labelOffset = 30;
numeric schoolSymOffset = 25;
class GEOREF vecGeoref;
class POINT2D offset;
func FindPointInPoly(

class POINT2D pointloc,
class VECTOR vPoints,
class VECTOR vPolys,
class POINT2D cursorpos)

{
numeric closepoly = FindClosestPoly(vPolys, cursorpos.x,

cursorpos.y);
numeric i;
for(i=1; i<=vPoints.$info.NumPoints; i++) {

numeric polyForPoint = FindClosestPoly(vPolys,
vPoints.Point[i].Internal.x, vPoints.Point[i].Internal.y);

if(polyForPoint == closepoly) {
pointloc.x = vPoints.Point[i].Internal.x;
pointloc.y = vPoints.Point[i].Internal.y;
return 1;

}
}
return 0;

}

func FindPointInPolyElemNum(
class VECTOR vPoints,
class VECTOR vPolys,
class POINT2D cursorpos)

{
numeric closepoly = FindClosestPoly(vPolys, cursorpos.x,

cursorpos.y);
numeric i;
for(i=1; i<vPoints.$info.NumPoints; i++) {

numeric polyForPoint = FindClosestPoly(vPolys,
vPoints.Point[i].Internal.x, vPoints.Point[i].Internal.y);

if(polyForPoint == closepoly) {
return i;

}
}
return -1;

}
proc OnInitialize ()
{

numeric SZ=5;
}
func getTriOppositeLength(numeric adj, numeric opp, numeric outAdj) {

if(adj==0) return 0;
return outAdj * opp / adj;

}
func getBinaryOutcode(class POINT2D p, class RECT r) {

numeric opcode = 0;
if(p.x < r.x1) opcode = opcode | 1;

if(p.x > r.x2) opcode = opcode | 2;
if(p.y > r.y2) opcode = opcode | 4;
if(p.y < r.y1) opcode = opcode | 8;
return opcode;

}
func class POINT2D clipPoint(class POINT2D p, class POINT2D

mouseloc, class RECT ext) {
class POINT2D out = p;
numeric outcode = getBinaryOutcode(out, ext);
while(outcode != 0) {

class POINT2D temp = out;
if(outcode & 1 == 1) {

temp.x = ext.x1;
temp.y = mouseloc.y + getTriOppositeLength(mouseloc.x -

out.x, mouseloc.y - out.y, ext.x1 - mouseloc.x);
} else if(outcode & 2 == 2) {

temp.x = ext.x2;
temp.y = mouseloc.y + getTriOppositeLength(mouseloc.x -

out.x, mouseloc.y - out.y, ext.x2 - mouseloc.x);
} else if(outcode & 4 == 4) {

temp.x = mouseloc.x + getTriOppositeLength(mouseloc.y -
out.y, mouseloc.x - out.x, ext.y2 - mouseloc.y);

temp.y = ext.y2;
} else if(outcode & 8 == 8) {

temp.x = mouseloc.x + getTriOppositeLength(mouseloc.y -
out.y, mouseloc.x - out.x, ext.y1 - mouseloc.y);

temp.y = ext.y1;
}
out = temp;
outcode = getBinaryOutcode(out, ext);

}
return out;

}
func calcAngle(class POINT2D a, class POINT2D b) {

numeric x = b.x - a.x;
numeric y = b.y - a.y;
numeric angle = acos(x / sqrt(x^2 + y^2));
if(y < 0) return PI - angle;
return angle - PI;

}
proc drawAngledLine(class GC gc, numeric x, numeric y, numeric angle,

numeric len) {
numeric a = len * cos(angle);

numeric b = len * sin(angle);
gc.MoveTo(x, y);
gc.DrawTo(x-a, y-b);

}
proc drawAngledPoint(class GC gc, numeric x, numeric y, numeric angle,

numeric len) {
numeric a = len * cos(angle);
numeric b = len * sin(angle);
gc.DrawPoint(x-a, y-b);

}

set offsets and
map scales for
drawing

function called to
find attendance
area polygons at
cursor position

function called to
find points that fall
in attendance area
polygons at cursor
location

procedure called the first
time a GraphTip is activated

function called to determine
line from cursor location to
school point

function called to determine if
school point is outside View

function called to
find point location
or, if not in View,
intersection of line
from cursor to
school point

function called to
calculate angle of line
from cursor to View
intersection for school
points not in View

procedure called to draw
line at calculated angle

