
MicroImages, Inc. +1 402 477 9554 • Support +1 402 477 9562 • www.microimages.com • info@microimages.com • April 2001

Sample SML Script

TNTmips includes a Network Analysis process that determines the “best” route between points that fall
along a set of lines or the allocation of lines for the most efficient use in delivery to or transportation
from a set of centers. In either case, the stops along the route or the centers must fall on the line
network (the process automatically chooses the nearest node when you indicate the location
of a stop or center). But what do you do when your points, in this case farm gates and process-
ing plants, are not actually on the roads? Use an SML script like the one described here.

This script uses three vector objects: one to provide the road net-
work, one with farm gate locations, and one with processing plant
locations. You can substitute any widely distributed product location
for the farm gates and any central location to which the product would
be delivered for the processing plants. The difficulty in this particu-
lar case is that the data is not suitable for direct use in the Network
Analysis process because, even if merged into a single vector object,
the points do not fall on the roads (you may have to zoom in quite a
way for it to be evident, see inset at left). The problem data was

provided by AgriQuality New Zealand (formerly part of the Minis-
try of Agriculture and Forestry). This script uses only the distance
from the processing plants to calculate impedance, but you can
include a variety of other factors, such as road conditions, speed
limits, and the price offered at each processing plant. You can readily

change the market components of the impedance on a daily basis if
need be with the end result of a dynamic appraisal of the best market
for delivery of your product today.

The script adds a node to the ROADS object at the closest point on the
closest line for each of the points in the FARMS object. It keeps track of these added nodes in an array that associates them with
the correct farm. Nodes are similarly added for each of the processing plants. The shortest distance between each farm and
processing plant is calculated using network analysis functions. This script adds two new tables to the point database of the
FARMS vector object: one with records attached to each point that list the distance to each of the processing plants and another
that provides the geographic coordinates of each processing plant in
the same coordinate system used by the FARMS object. The ROADS

vector ends up with many new nodes (equal to the number of farms
and processing plants) that are not required for topology. These nodes
can easily be removed by filtering the vector (use the Remove Ex-
cess Nodes filter) if desired.

The script attaches multiple records to each farm gate point—one
for each processing plant. Such multiple attachments mean you can-
not simply style by attribute because the first record at-
tached to every point reports the distance to the first pro-
cessing plant. In order to style each point according to
which processing plant is closest or can be reached with
the least impedance, you need to style by script using a
script designed to evaluate all attached records. The script
used to style the results shown here is included on the back of this
page along with the script that determines the distance to each of the
processing plants.

sample
data area

New
Zealand

Farm to Market Routing

distance
in km

Script for Market Routes (network.sml)

MicroImages, Inc. +1 402 477 9554 • Support +1 402 477 9562 • www.microimages.com • info@microimages.com • April 2001

Sample scripts have been prepared to illustrate how you might use the features of TNTmips’ Spatial Manipulation
Language (SML). If possible, the full script is printed below for your quick perusal. When a script is too long to fit on
one page, key sections are reproduced below. The sample script illustrated can be downloaded from the SML script
exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

clear(); #clear console

GetInputVector(Farms); #this vector is modified since tables are written to it
GetInputVector(Plants);
GetInputVector(TempNetwork); #this vector is modified by adding nodes

VectorToolkitInit(TempNetwork,”NoDBStatTable”);
VectorToolkitInit(Farms);

numeric numPoints;
numeric numFarms;
numeric numPlants;
numeric numLines;
numeric i;

Array xarray[1];
Array yarray[1];

numFarms = NumVectorPoints(Farms);
Array farms[numFarms];
numeric linenumber;
numeric tempx;
numeric tempy;
numeric a;
numeric b;
numeric distance;

farmgeo = GetLastUsedGeorefObject(Farms);
tempgeo = GetLastUsedGeorefObject(TempNetwork);

printf(“The number of farms is %d\n”,numFarms);

for i=1 to numFarms {
SetStatusMessage(sprintf(“Processing point %d of %d of farms”,i,numFarms));
tempx = Farms.point[i].Internal.x;
tempy = Farms.point[i].Internal.y;
GeorefTrans(farmgeo,tempx,tempy,tempgeo,tempx,tempy);
linenumber = FindClosestLine(TempNetwork,tempx,tempy);
ClosestPointOnLine(TempNetwork,linenumber,tempx,tempy,a,b);
VectorAddNode(TempNetwork,a,b,1);
farms[i] = FindClosestNode(TempNetwork,a,b);
}

numPlants = NumVectorPoints(Plants);
Array plants[numPlants];

plantgeo = GetLastUsedGeorefObject(Plants);

printf(“The number of plants is %d\n”,numPlants);

for i=1 to numPlants {
SetStatusMessage(sprintf(“Processing point %d of %d of plants”,i,numPlants));
tempx = Plants.point[i].Internal.x;
tempy = Plants.point[i].Internal.y;
GeorefTrans(plantgeo,tempx,tempy,tempgeo,tempx,tempy);
linenumber = FindClosestLine(TempNetwork,tempx,tempy);
ClosestPointOnLine(TempNetwork,linenumber,tempx,tempy,a,b);
VectorAddNode(TempNetwork,a,b,1);
plants[i] = FindClosestNode(TempNetwork,a,b);
}

VectorUpdateStdAttributes(TempNetwork);
CloseVector(TempNetwork); #flush vector

class Network net;
class Route route;
class MultiRoute multiroute;
numeric imp;

net =
NetworkInit(GetObjectFileName(TempNetwork),GetObjectName(GetObjectFileName(TempNetwork),GetObjectNumber(TempNetwork)));
NetworkSetDefaultAttributes(net);

numLines = NumVectorLines(TempNetwork);
for i=1 to numLines {

imp = (TempNetwork.line[i].LINESTATS.Length);
NetworkLineSetImpedance(net,i,imp,”FromTo”);
NetworkLineSetImpedance(net,i,imp,”ToFrom”);
}

total = numFarms * numPlants;
numeric count;
count = 1;
string tablename$;
class DATABASE db;
class DBTABLEINFO tinfo;

db = OpenVectorPointDatabase(Farms);
numeric recordnumber;
Array records[1];
numeric distance;

tinfo = TableCreate(db,”Plant_Num”,”Created by SML script”);
TableAddFieldInteger(tinfo,”Plant”,3);
TableAddFieldFloat(tinfo,”xcoord”,25,6);
TableAddFieldFloat(tinfo,”ycoord”,25,6);
for j=1 to numPlants {

tempx = Plants.point[j].Internal.x;
tempy = Plants.point[j].Internal.y;
GeorefTrans(plantgeo,tempx,tempy,tempgeo,tempx,tempy);
recordnumber = TableNewRecord(tinfo,j,tempx,tempy);
records[1] = recordnumber;
TableWriteAttachment(tinfo,i,records,1);
}

tablename$ = “Plant_Dist”;
tinfo = TableCreate(db,tablename$,”Created by SML Script”);
TableAddFieldInteger(tinfo,”Plant”,3);
class DBFIELDINFO the_field;
the_field = TableAddFieldFloat(tinfo,”Net_Dist”,25,6);
the_field.UnitType = “Distance”;
the_field.Units = “kilometers”;

for j=1 to numPlants {

printf(“Plant %d\n”,j);
SetStatusMessage(sprintf(“Calculating all routes from plant %d of %d”,j,numPlants));
NetworkCalculateMultiRoute(net,plants[j],farms,numFarms,multiroute);

for i=1 to numFarms {
SetStatusMessage(sprintf(“Calculating route %d of %d”,count,total));
count +=1;
printf(“Route from plant %d to farm %d\n”,j,i);

NetworkMultiRouteGetRoute(multiroute,farms[i],route);
report$ = NetworkRouteGetReport(route);

distance = StrToNum(GetToken(report$, “ “,18));
recordnumber = TableNewRecord(tinfo,j,distance/1000); #m/1000 = km
records[1] = recordnumber;
TableWriteAttachment(tinfo,i,records,1);

NetworkRouteClose(route);
}

NetworkMultiRouteClose(multiroute);
}

NetworkClose(net);

CloseVector(Farms);
CloseVector(TempNetwork);
CloseVector(Plants);

printf(“Script Ran to Completion”);

finds closest point
on closest line to
farm gate and
adds a node

finds closest point
on closest line to
processing plant
and adds a node

updates standard attributes
and closes modified vector
object (road network)

variable
declarations

prompts for
input vectors

gets georeference
for farms and roads

creates table and
field with km
distance units

calculates
distance of best
route from each
farm to each
processing plant
and adds to record
attached to farm in
distance table

sets network
impedance to
line length

creates table that
reports plant
locations in same
coordinate
system as farms

creates array of all
added nodes and
corresponding farms

Script for Styling by Closest Plant
val = Plant_Dist[1].Net_Dist
id = Plant_Dist[1].Plant

for i = 2 to SetNum(Plant_Dist[*]) {
 if (Plant_Dist[i].Net_Dist < val) {
 val = Plant_Dist[i].Net_Dist;
 id = Plant_Dist[i].Plant;
 }
}

if (id == 1)
 Style$ = “Style1” else
if (id == 2)
 Style$ = “Style2” else
 Style$ = “Style3”
UseStyle = 1

finds processing
plant with lowest
distance value

assigns drawing
style according to
plant identified as
closest

