
Movie Generation Scripts

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • May 2001

Sample SML Scripts

View Window

Frame

Movie

The main processing loop of any
movie script must perform three major
functions:
1. Change the content of one or more

view windows and redraw. This
step might involve altering the
viewing parameters for a 3D view,
or adding new layers or updating
existing layers in a 2D view.

2. Copy the contents of the view
window(s) to a frame. Additional
graphic symbols or annotation text
can be drawn directly into the
frame if you wish.

3. Copy the frame to the output movie
file.

The Spatial Manipulation Lan-
guage (SML) now puts you in the
director’s chair. Using new movie
generation SML functions in

TNTmips 6.50 you can create scripts that set up
and record custom animations of your geospatial
data. You can record these animations in either
MPEG format (any computer platform) or AVI for-
mat (Windows computers only) and set both
frame rate and recording time. MicroImages has
prepared a number of sample movie generation
scripts, one of which is excerpted on the reverse
side of this page. Although these movie genera-
tion scripts were prepared after the TNTmips 6.50
Products CD was mastered, you can download
any of the scripts as well as sample movie files
from the Downloads page of the MicroImages
web site:

www.microimages.com/freestuf/.
The 30 new SML functions and class methods
that implement movie generation incorporate
many of the capabilities of the 3D Simulation pro-
cess in TNTmips. But they also give you more
control over the 3D viewing parameters. You can
specify viewer position and view
direction independently, so that the
3D view can look ahead along the
flight path (as in the standard 3D
Simulation process), or to the side,
straight down, or backward along
the flight path. You can create a
single 3D movie that incorporates

elements of the path, orbit, and pan modes of the
3D Simulation process.
But animations are not limited to 3D simulations.
An animation merely consists of a gradually vary-
ing series of static frames. Each frame is rendered
from one or more View windows created by the
script and then copied into the output MPEG or
AVI file. The movie therefore can record any se-
quential change in the view windows used to
create the frames.
A simple example would be a sequence of 2D
views showing a change in some mapped param-
eter through time. The script can sequentially
add and then remove a series of pre-prepared lay-
ers to and from the view, or modify the display
parameters for a single continuing layer (such as
a set of vector polygons with attached attributes)
to create the change from frame to frame. More
complex examples might sequentially display the
result of some process computed in the script,
such as a series of viewsheds computed for dif-
ferent positions along a traverse line through a
terrain model. The possibilities are limited only
by your source data and your imagination!

New functions in the Frame and Movie function groups
are used to set up the generic frame and movie param-
eters, capture the View window contents to a frame, and
copy the frame to the output AVI or MPEG file. For 3D
animations, new class methods in the VIEWPOINT3D
class are used to manipulate the settings for the 3D view.
You can set viewer and view center position coordinates
explicitly for each frame, or move either position a speci-
fied distance or direction relative to the previous position.
Either position can be rotated around the other. You can
also set either position and then use an azimuth angle,
elevation angle, and distance to define the other.

In a 3D simulation script you can render both 2D and 3D views into each frame, as
shown in the above illustration. After each frame is captured you can also draw
symbols into it marking the current viewer position and view center position, and
draw a trail of previous position symbols behind the moving symbol. Sample 3D
simulation scripts are available to show how to script these features, and to set
up panning, a spiral orbit, and contant-altitude and constant-height flight paths.

Excerpts from Constant Height Flight Path Script (PATHcHT2.sml)

MicroImages, Inc. (402)477-9554 • FAX (402)477-9559 • 206 S. 13th Street, Lincoln, Nebraska 68508-2010 USA • info@microimages.com • May 2001

Sample scripts have been prepared to illustrate how you might use the new features of TNTmips’ Spatial Manipulation
Language (SML). Key sections of one script are reproduced below for your quick perusal. The entire script can be
downloaded from the SML script exchange at www.microimages.com/sml/ftpsmllink/TNT_Products_V6.5_CD.

string format$;
format$ = “AVI”;

string framerate$;
framerate$ = “MOVIE_FRAMERATE_24”;

numeric time;
time = 60;

GetInputRaster(Surface);
GetInputRaster(RastDrape);
GetInputVector(FlightPathVec);
GetInputVector(ViewCenterVec);

string styleFilename$;
string styleObjectname$;
GetInputObject(“Style”,”Select style object for center and viewer

point symbols:”, styleFilename$, styleObjectname$)
string viewer$;
viewer$ = “VIEWER”;
string center$;
center$ = “CENTER”

print(“START”);

numeric size;
size = 320;

numeric zoomfactor;
zoomfactor = 1.0;

class GROUP group;
group = GroupCreate();

string flags$;
flags$ = “NoScalePosLine,NoIconBar,NoScrollbars,NoStatusLine”;

class XmForm dialog2d;
class VIEW view2d;
dialog2d = CreateFormDialog(“VIEW 2D”);
view2d = GroupCreateView(group,dialog2d,””,size,size,flags$);
view2d.BackgroundColor.red = 67;
view2d.BackgroundColor.green = 100;
view2d.BackgroundColor.blue = 100;

class XmForm dialog3d;
class VIEW3D view3d;
dialog3d = CreateFormDialog(“VIEW 3D”);
view3d = GroupCreate3DView(group,dialog3d,””,size,size,flags$);
view3d.BackgroundColor.red = 67;
view3d.BackgroundColor.green = 100;
view3d.BackgroundColor.blue = 100;

GroupQuickAddRasterVar(group,Surface,1);
GroupQuickAddRasterVar(group,RastDrape,0);

DialogOpen(dialog2d);
DialogOpen(dialog3d);

ViewRedrawFull(view2d);
ViewRedrawFull(view3d);
ViewZoomOut(view2d,zoomfactor,1);

x2d = 0;
y2d = 0;
x3d = size;
y3d = 0;
w = 2 * size;
h = size;

numeric fontsize;
fontsize = 16;

class Frame frame;
frame = FrameCreate(w,h);

ActivateGC(FrameCreateGC(frame));
DrawTextSetHeightPixels(fontsize);
DrawUseStyleObject(styleFilename$,styleObjectname$);

class Movie movie;
movie = MovieInit();

MovieSetFormat(movie,format$);
MovieSetFrameRate(movie,framerate$);
MovieSetFrameWidth(movie,w);
MovieSetFrameHeight(movie,h);

string ext$;
ext$ = MovieGetFileExt(movie);
string filename$;
filename$ = GetOutputFileName(“”,”Make filename for movie”,ext$);

if (time <= 1.0) time = 1.0;

numFrames = time * rate;

class Georef georefS;
georefS = GetLastUsedGeorefObject(Surface);
GeorefSetProjection(georefS,group.Projection);

class Georef georefFlight;
georefFlight = GetLastUsedGeorefObject(FlightPathVec)
GeorefSetProjection(georefFlight,group.Projection);

class Georef georefCent;
georefCent = GetLastUsedGeorefObject(ViewCenterVec);
GeorefSetProjection(georefCent,group.Projection);

MovieStart(movie,filename$);

for i = 1 to numFrames {
class POINT3D fpt;
fpt.x = xarrayf_eq[i];
fpt.y = yarrayf_eq[i];
fpt.z = zarrayf_eq[i];
vp.SetViewerPosition(fpt);

class POINT3D cpt;
cpt.x = xarrayc_eq[i];
cpt.y = yarrayc_eq[i];
cpt.z = zarrayc_eq[i];
vp.SetCenter(cpt);

ViewRedraw(view3d);

FrameCopyFromView(frame,view2d,0,0,size,size,x2d,y2d);
FrameCopyFromView(frame,view3d,0,0,size,size,x3d,y3d);

for j = 1 to (i - 1) {
SetColor(colorc)
FillCircle(xarraycs[j],yarraycs[j],2)

}

class POINT2D point;
point.x = vp.CenterPoint.x;
point.y = vp.CenterPoint.y;
point =

TransPoint2D(point,ViewGetTransMapToView(view2d,group.Projection));
point = TransPoint2D(point,ViewGetTransViewToScreen(view2d));
DrawSetPointStyle(center$);
DrawPoint(point.x,point.y);

xarraycs[i] = point.x;
yarraycs[i] = point.y;

for j = 1 to (i - 1) {
SetColor(colorf)
FillCircle(xarrayfs[j],yarrayfs[j],2)

}

point.x = vp.ViewPos.x;
point.y = vp.ViewPos.y;
point =

TransPoint2D(point,ViewGetTransMapToView(view2d,group.Projection));
point = TransPoint2D(point,ViewGetTransViewToScreen(view2d));
DrawSetPointStyle(viewer$);
DrawPoint(point.x,point.y);

xarrayfs[i] = point.x;
yarrayfs[i] = point.y;

DrawTextSetColors(black);
DrawTextSimple(“Muddy Mountains, NV”,2,fontsize);
DrawTextSetColors(colorc);
DrawTextSimple(“View center path”,2,fontsize*2.1);
DrawTextSetColors(colorf);
DrawTextSimple(“Flight path”,2,fontsize*3.3);

MovieAddFrame(movie,frame);
}

MovieStop(movie);
MovieExit(movie);
DialogClose(dialog2d);
DialogClose(dialog3d);

Stop and exit movie, close dialogs

End of loop recording frames

Add frame to movie

Draw text
annotation
in frame

Update arrays of previous
viewer position coordinates

Draw current viewer position in frame

Loop to draw
previous viewer
positions in frame

Update arrays of previous
center point coordinates

Draw current center point in frame

Loop to draw previous
center points in frame

Copy both
views to frame

Redraw both views

Set view center position

Set viewer position along flight path

Begin loop for each frame

Start recording movie

Get georeference
parameters for layers
and reset to group

projection
defined by
raster drape
layer

Check recording time and
calculate number of frames

Make output fileSet movie format, frame
rate, and recording time

Select input DEM for surface, raster
drape, and two vector objects
containing ground traces of
flight path and view center path

Select style object containing
point symbol styles for viewer
position and view center position

Variables to set size of 2D and 3D view
windows and zoom-out factor for 2D view

Create display group. Create flag to create
view without iconbar, scrollbars, status line,
and scale/position line; important to maintain
fixed window size during movie generation

Create dialog and 2D view

Create dialog and 3D view

Add surface and
raster drape to group

Open both views

Full redraw of both views

Parameters to set location and
size of each view in movie frame

Set fontsize for text annotation in frame

Create blank frame

Create graphics context for frame

Initialize movie

Set more movie parameters

Section computing arrays of viewer
and center positions from input vectors
is omitted here; see script

