
Building Dialogs in SML

page 1

Tutorial

Building
Dialogs in SML

in

TNTmips®

TNTedit™
TNTview®

S
M
L

D
I
A
L
O
G
S



Building Dialogs in SML

page 2

Before Getting Started

You can print or read this booklet in color from MicroImages’ Web site.  The
Web site is also your source for the newest Tutorial booklets on other topics.
You can download an installation guide, sample data, and the latest version
of TNTmips.

http://www.microimages.com

For SML scripts that process multiple input objects or require user input for
numerous parameter settings, consider creating custom dialog windows to stream-
line user interaction with the script.  Dialog setup is streamlined by using a simple
XML-based dialog specification.  This booklet shows you how to construct cus-
tom dialogs and how to use them with an SML script.

Prerequisite Skills  This booklet assumes that you have completed the exercises
in the Displaying Geospatial Data, TNT Product Concepts, and Writing Scripts
with SML tutorial booklets.  Those exercises introduce essential skills and basic
techniques that are not covered again here.  Please consult those booklets and the
TNTmips Reference Manual for any review you need.

Sample Data  The exercises presented in this booklet use sample data that is
distributed with the TNT products.  If you do not have access to a TNT products
DVD, you can download the data from the MicroImages web site.  In particular,
this booklet uses sample files and scripts in the SMLDLG, SCRIPTING, and CB_DATA

sample data collections.

More Documentation  This booklet is intended only as an introduction to creat-
ing dialog windows in SML scripts.  The Reference Guide to SML Dialog
Specifications in XML is available from the MicroImages web site and is also
included as an appendix in electronic versions of this tutorial booklet.

More Documentation  This booklet is intended only as an introduction to the
TNT Geospatial Scripting Language.  Descriptions of sample scripts can be found
in a variety of Technical Guides that are available from MicroImages’ web site.

TNTmips Pro, Basic, and Free  TNTmips comes in three versions:  TNTmips
Pro (which requires a software license key), low-cost TNTmips Basic, and
TNTmips Free.  TNTmips Basic and TNTmips Free provide nearly all the capa-
bilities of TNTmips Pro but limit the size of the geospatial objects and attribute
tables that can be used in your project.  TNTmips Basic and TNTmips Free allow
you to create and use scripts in the Display process (database queries, style scripts,
macroscripts, and others) and the Geoformula process, but only TNTmips Pro
allows you to create and run complex standalone geospatial scripts.

Randall B. Smith, Ph.D., 5 January 2012
©MicroImages, Inc., 2003- 2012



Building Dialogs in SML

page 3

STEPS
choose Script / Edit
Script... from the
TNTmips main menu to
open the Spatial
Manipulation Language
editor window

Welcome to Building Dialogs in SML
You can use the geospatial scripting language (SML)
in the TNT products to write many types of custom
programs that operate on the geospatial data objects
in your TNT Project Files.  If you are writing a script
for a one-time processing operation, the processing
parameters and names of input and output objects
and files can be written explicitly into the script.  But
any script you plan to reuse or provide to others
should include interactive dialogs to let the user se-
lect objects and enter program parameters.

SML provides several ways for you to include inter-
active dialogs in your scripts.  The Raster, Vector,
CAD, TIN, and File function groups each include
GetInput...() , GetOutput...(), and other functions that
pop up a dialog so the user can select or create ob-
jects and files as needed as the script is executed.
The functions in the Popup Dialog group provide
dialogs that prompt the user to enter numeric and
other types of parameter values.  These functions
are easy to use, but each opens a separate transient
dialog window, so a complex processing script might
require a barrage of popup dialogs.

You can make complex scripts easier to use by cre-
ating one or more custom dialog windows that bring
together object selection and
parameter inputs.    Custom
dialog windows in SML can
include text and icon
pushbuttons, toggle and radio
buttons, text and numeric
fields, labels, menu buttons,
listboxes, and comboboxes,
among others.  This booklet
provides an introduction to
building custom dialog windows for use in your SML
scripts.  It provides many sample dialog scripts and
several complete scripts that incorporate complex
custom dialog windows.

An example of a custom
dialog window.  We will
examine this dialog and its
components in more detail
on a later page.

Dialog specifications in XML
are introduced on pages 4-
15 with examples of all
basic dialog elements.
Pages 16-20 describe how
to set up the script to
process the dialog
specification and open the
dialog and the optional use
of an XML Editor.
Techniques for wiring the
dialog controls to script
actions are described on
pages 21-27. Pages 28-31
provide examples of
complex dialog windows and
dialogs with views.  Use of a
drawing canvas, dialog
localization, and use of
modeless dialogs in event-
driven scripts are coveredon
pages 32-35.



Building Dialogs in SML

page 4

Dialogs from XML Text

Modal Dialog Modeless Dialog
A modal dialog suspends other script
operations as long as the dialog is open.
It is automatically supplied with OK and
Cancel buttons.  A modal dialog is
typically used in a standalone script to
gather all inputs and process settings
prior to running the script process.

A modeless dialog can remain open while
other script operations take place.  A
modeless dialog is automatically supplied
with OK, Close, and Apply buttons.  A
modeless dialog is required in event-
driven scripts such as tool scripts and
display control scripts.

Custom dialogs in SML make use of classes in the User Interface (GUI) class
group shown in the Script Reference window.  This group includes class GUI_DLG,
which represents a dialog window, and a class for each type of layout element and
control that can be used in a dialog window.  To use a custom dialog with an SML
script, you must construct the dialog by designating what controls it contains and
how they are arranged in the dialog.   You must also “wire-up” the dialog by
incorporating code in your script to get the values and settings the script user
designates in the dialog and to specify what actions should be taken by the script
when particular controls (such as a dialog’s OK button) are activated.

In order to simplify the process of laying out a dialog window, SML lets you
create and arrange dialog components using XML-formatted text, which we will
refer to as a dialog specification.  The  dialog specification can be embedded in
the script as a string variable or read in from a separate XML file.  The dialog
specification is interpreted by SML and used to set up the GUI_DLG class and
the component controls your script will use.

The first part of this booklet focuses on using XML to set up a  dialog specifica-
tion using different types of dialog controls.  We will then discuss how to use the
specification in a script, how to open the dialog and obtain settings from it, and
how to use the dialog to initiate script actions.

Dialog windows you create with a dialog specification are automatically supplied
with pushbuttons at the bottom of the window (such as an OK button) that you
can use to initiate script actions.  You can open a dialog in either modal or modeless
form, which are described and illustrated below.



Building Dialogs in SML

page 5

STEPS
choose File / Open /
*.SML File..., navigate to
the SMLDLG directory, and
select GENDLG.SML.
run the script
when prompted to select
the dialog specification,
select HELLO.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
keep the Hello World
dialog open and proceed
to the next page

<?xml version="1.0"?>
<root>
<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>

A Simple Dialog Specification in XML

XML, the Extensible Markup
Language, is a generic
meta-language that allows
the creation of structured,
self-describing text.  XML
supplies a structure and
syntax, but a specific set of
tags and attributes is
required to define the
meaning of the elements in
an XML file.  MicroImages
has created such a set of
tags and attributes to identify
the various types of dialog
components and their
properties.  SML interprets
these tags in order to create
your dialog window.

XML is a form of structured text that makes use of
tags (enclosed between < and > characters) to de-
limit and identify elements of text data.  In an SML
dialog specification, the data elements identified by
the XML tags correspond to specific components of
a dialog window, such as buttons and labels.  Tags
occur in pairs, with a start tag and end tag enclosing
the relevant text.

As an example, look at the dialog specification for
the Hello World dialog window shown below.  This
modal dialog window consists of a label element and
two pushbuttons (OK and Cancel, which are sup-
plied automatically).  The two <label> tags enclose
and identify the text to be used for the label on the
dialog.  Note that start and end tags use the same tag
name, but in the end tag it is preceded by the for-
ward slash ( / ) character.

Data elements in
XML can be nested
inside other data ele-
ments (in one or more
levels) to indicate
membership in a
group.  This is a good match to the structure of a
dialog window, in which some window components
are contained within other components.  In this ex-
ample the dialog element (which identifies the dialog
window as a whole) contains the label element.  The
dialog is in turn contained within the root element,
which is the required top-level element in any dialog
specification.

For ease of editing and reading a dialog specifica-
tion, the start and end tags for “container” dialog
elements should be placed on separate text lines, with
the contained elements identified on intervening
lines.  Different levels of indents should also be used
to clarify this nested, tree-like structure.



Building Dialogs in SML

page 6

Using Attributes for Tags
Start-tags can also include one or more attributes,
which are predefined keywords to which you can
assign a value.  The assignment has the form:

In a dialog specification, each type of dialog compo-
nent has a predefined set of attributes.  Each time
you use that component type, you can assign attribute
values to define the specific properties you want that
component to have.  Attribute names are case-sensi-
tive, but you can list attributes in any order within
the start-tag.

Any dialog component can have an id attribute, a
unique identifier for that element.  The value of an
id attribute can be any character string, but it must
be unique within the dialog.  Use an id attribute for
the dialog element and any other element that your
script needs to access, such as to set or read values.

In the Hello World
dialog,  the dialog el-
ement has an id
attribute that the script
uses to create and

open the actual dialog window.  It also has a Title
attribute that supplies the text for the window title.
The label element in the dialog could also have an id
attribute, but here it doesn’t need one.  The label text
is simply a static part of the dialog, so there is no
need for the script to have any interactive access to
it.  Therefore the id attribute is omitted.

In the next few pages we will examine several addi-
tional dialog windows and their specifications in
XML to illustrate the use of other dialog components.

attribute = “value”

STEPS
examine the attributes
for the elements in the
dialog specification
click [OK] on the Hello
World dialog window to
end the script

<?xml version="1.0"?>
<root>
<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>

To conform to XML format
standards, the dialog
specification should begin
with a standard XML
Declaration specifying the
version of XML.

In order for SML to correctly
interpret the dialog
specification, it must follow
the simple syntax rules that
define a well-formed XML
document:

every element must have
both start and end tags
all attribute values must
be in quotes
elements may not
overlap

The Reference Guide to SML Dialog Specifications in XML contains complete
lists of the attributes available for use with each type of dialog element and
guidelines for using dialog specifications in SML scripts.  It is available from the
MicroImages web site and is appended to PDF versions of this booklet.



Building Dialogs in SML

page 7

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select TIGEROP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the
Extraction Options dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="tigerop" Title="Extraction Options">
<label>Extract from TIGER:</label>
<togglebutton id="citybtn" Name="City Polygons"

Selected="true"/>
<togglebutton id="votebtn" Name="Voting Districts"

Selected="false"/>
<togglebutton id="congbtn" Name="Congressional Districts"

Selected="false"/>
</dialog>

</root>

Togglebuttons and Empty Tags
The Extraction Options sample dialog window has
a label and three togglebuttons.  Each of these com-
ponents is represented by an element within the
dialog element in the dialog specification.  Note that
these components are laid out from top to bottom in
the window, rather than from left to right.  This is
the default layout order for components in a dialog.
Later we will see how you can control the layout
orientation.

Each togglebutton element in this example has three
attributes: id, Name, and Selected.  The id attribute
is needed so that the SML script can find out
whether each togglebutton has been set or not.  The
Name attribute specifies text for the label that is
automatically placed to the right of the button.  The
Selected attribute lets you set the default state for
each button when the dialog window opens.  The
button is pushed in (on) if you set Selected = “true”
and pushed out (off) if you set Selected = “false”.

Note that all of the information required to set up a
togglebutton is included in the start tag name and its
attributes.  Unlike the label element, there is no other
text to be enclosed by separate start and end tags.  In
this case the two tags can be combined into a single
empty tag.  The slash character ( / ) that normally
begins an end tag is placed before the closing > char-
acter of an empty tag.

The dialog specifications
shown in this booklet are
color-coded for ease of
reading.  Standard XML
formatting characters are in
blue, tag names are in purple
or red, attribute keywords
are in green, and attribute
values and other text are in
black.



Building Dialogs in SML

page 8

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select SELCOMP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Select
Composite dialog
window to end the script

Combobox and Items

<?xml version="1.0"?>
<root>
<dialog id="selcomp" Title="Select Composite">
<label>Select Composite Type:</label>
<combobox id="comptype" Default="24">
<item Value="24">24-bit composite</item>
<item Value="16">16-bit composite</item>
<item Value="8">8-bit composite</item>

</combobox>
</dialog>

</root>

The Select Composite sample dialog window in-
cludes a label and a type of menu control called a
combobox.  A recessed box resembling an editable
text field shows the current menu selection, and a
small icon at the right side of the control is used to
drop down the menu choices.

The possible selections for any menu-type control
(combobox, listbox, and menubutton) are created in
a dialog specification by adding item elements within
the parent control element.  In this example the
combobox control element includes three item ele-
ments that specify different types of color composite
raster. An item element resembles a label element in
that its start and end tags enclose the text for the
menu entry.  However, an item element also has a
Value attribute.  The text string you assign to this
attribute becomes the “value” of the combobox con-
trol when that menu item is selected.  Each item in a
menu control therefore should have a different char-
acter string assigned for its value.  The item value
strings in this example are numbers corresponding
to the bit-depths of the composites.

Menu-type controls that show the selected menu item
(combobox and listbox) have a Default attribute that
you can use to indicate which item should be the
default selection.  Simply assign that item’s value
string as the value of the Default attribute.  As an
alternative, you can use the item attribute Selected,
which is either “true” or “false”.  If Selected=“true”,

that item is
i n i t i a l l y
s e l e c t e d
(overriding
the Default
attribute of
the parent
control, if
any).

You can use the TNTmips
Text File Editor or any other
text editor to open and
examine the dialog
specification XML files used
in these exercises.



Building Dialogs in SML

page 9

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select RADIOGP.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Select
Process dialog window
to end the script

Radiogroup and Groupbox

<?xml version="1.0"?>
<root>
<dialog id="radiogp" Title="Select Process">
<groupbox Name=" Process: " ExtraBorder="4">
<radiogroup id="processgp" Default="entire">
<item Value="entire" Name="Entire Scene"/>
<item Value="polygon" Name="AOI Polygon"/>
<item Value="manual" Name="Manual Selection"/>

</radiogroup>
</groupbox>

</dialog>
</root>

The Select Process sample dialog window includes
a hybrid type of control called a radiogroup.  A
radiogroup is a group of small buttons (resembling
togglebuttons) in which only one button can be turned
on at a time.  Turning on one button automatically
turns off any other button that was previously turned
on.  So a radiogroup functions like a menu in which
all selections are constantly visible.

The specification for a radiogroup has the same struc-
ture as the other menu-type controls.  The item
elements inside the radiogroup element provide the
names for the buttons (analagous to the entries in a
menu) and the value for the control when that button
is turned on.  This example shows an alternative
method for specifying the text string for a menu item.
In the example on the previous page, the item name
was provided as text between start and end tags.  In
the Select Process dialog, the items are specified
using empty tags with a Name attribute.  Either
method can be used for any menu-type control.

This dialog also includes a groupbox, a simple rect-
angular frame around one or more other controls,
which can also be automatically provided with a la-
bel inside the top edge using a Name attribute.  A
groupbox is one type of layout component in a dia-
log.  A layout component does not provide any
program control, but merely aids in the layout of the
dialog window.  Other layout components are shown
in later sample dialogs.

In the sample dialog
specifications in this booklet,
tags for control components
are shown in red and tags
for layout and main-level
dialog elements are shown
in purple.



Building Dialogs in SML

page 10

Numeric Fields and Layout Panes
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select TIGRDS.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the TIGER
Road Options dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="tigrds" Title="TIGER Road Options">
<label>Road processing options:</label>
<togglebutton id="getrds" Name="Extract Road Lines"/>
<togglebutton id="mkbuf" Name="Make Roads Buffer Zone"/>
<pane Orientation="horizontal">
<label>Buffer Distance:</label>
<editnumber id="buffdist" Width="4" Precision="0"

Default="100" MinVal="0"/>
<label>meters</label>

</pane>
</dialog>

</root>

The TIGER Road Options sample dialog window
introduces the layout element you will probably use
most often, the pane.  A layout pane is simply an
invisible container in which you can place multiple
dialog components and control their arrangement.
The most important attribute of a pane element is
Orientation, which can be either “horizontal” or “ver-
tical”.  The three components near the bottom of this
dialog window (two labels surrounding an editable
numeric field) are placed within a pane with hori-
zontal orientation, so the components are arranged

in order from left to right across the pane.  If
the pane orientation is set to “vertical”, the el-
ements within the pane are arranged from top
to bottom.

The numeric field is created using an
editnumber element in the dialog specification.
The Width attribute sets the width in typical
characters, while the Precision attribute sets the

number of digits after the decimal point (the default
is 6).  The Default and MinVal attributes set the value
initially displayed in the field and the minimum al-
lowed value, respectively.  There is also an available
MaxVal attribute to set the maximum allowed value.
This control has no built-in label, so the dialog uses
a label element to the left of the field to label its
purpose and another to the right to identify the units.

An invisible layout pane with
horizontal orientation
contains these dialog
components.



Building Dialogs in SML

page 11

Pushbuttons and Listbox
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select LANGUAGE.XML in the
SMLDLG directory and click
[OK]
select several languages
in the listbox
compare the dialog
window to its
specification
click [OK] on the
Languages dialog
window to end the script

<?xml version="1.0"?>
<root>
<dialog id="language" Title="Languages">
<pane Orientation="horizontal">
<pushbutton id="dict" Name="Dictionary..."/>
<pushbutton id="file" Icon="CREATE_FILE"/>

</pane>
<label>Select languages:</label>
<listbox id="language" Height="4" SelectStyle="multi">
<item Value="english" Selected="true">English</item>
<item Value="french">French</item>
<item Value="spanish">Spanish</item>
<item Value="japanese">Japanese</item>
<item Value="german">German</item>

</listbox>
</dialog>

</root>

The Languages sample dialog window illustrates the
use of pushbuttons and a listbox.  The upper pane of
the dialog includes two pushbuttons, one with a text
label and one with an icon.  Use the Name attribute
for the pushbutton tag to specify the text for the but-
ton label or the Icon attribute to specify the name of
the icon to be used.  The icon name must match an
iconid listed in the internal TNT reference files.  To
see a complete list of the valid iconids, open the Script
Reference window from the SML editor and select
the GUI_CTRL_TOGGLEBUTTON class.  The
valid iconid values are listed under the iconid pa-
rameter of the CreateIcon() class method.

A listbox provides a list of selectable items.  If the
value for the Height attribute is less than the number
of items, the box is provided with a vertical scrollbar.
A listbox can be set to allow the selection of more
than one of its items by using the SelectStyle attribute.
The default value “single” for this attribute permits
only one item to be selected at a time.  The value
“multi” used in this dialog specification allows the
user to select multiple entries by simply clicking on
each one (clicking on an already-selected item toggles
it off).  The value “extended” allows Windows-style
item selection by using the mouse with the SHIFT
or CTRL key.



Building Dialogs in SML

page 12

Menubuttons
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select PROCPTS.XML in the
SMLDLG directory and click
[OK]
click on the two menu
buttons in the upper part
of the dialog window
compare the dialog
window to its
specification
click [OK] on the
Process Selected Points
dialog window to end the
script

<?xml version="1.0"?>
<root>
<dialog id="procpts" Title="Process Selected Points">
<pane Orientation="horizontal">
<menubutton id="file" Icon="DESKTOP_FILE"

ToolTip="Text File...">
<item Value="open">Open Text File</item>
<item Value="close">Close Text File</item>

</menubutton>
<menubutton id="ptaction" Name="Point Action...">
<item Value="save">Save Coordinates to Text File</item>
<item Value="buffer">Compute Buffer Zone</item>
<item Value="polygon">Find Enclosing Polygon</item>

</menubutton>
</pane>

</dialog>
</root>

A dialog window can also include menubuttons, but-
tons that drop down a selection menu when pressed.
Like a pushbutton, a menubutton can have either an
icon or a static text label.  Since a menubutton has
no way of showing which item is currently selected,
it is best used to launch one of several alternative
actions from the dialog.

The Process Selected Point sample dialog might be
used with a Tool Script that allows the user to select
points in a View window.  It has two menubuttons,
one with an icon and one with a label.  The two
menubuttons are inside a horizontal pane so they
appear side by side in the dialog window.  Like other
menu controls, selections for a menubutton are reg-
istered using items within the menubutton element.

When you use an icon for a pushbutton, togglebutton,
or menubutton, you can use the ToolTip attribute to
set the text to be shown in the popup ToolTip when

the mouse cursor hovers over
the icon.



Building Dialogs in SML

page 13

<?xml version="1.0"?>
<root>
 <dialog Title="Name and Color" id="nmcolor">
  <pane Orientation="horizontal">
   <label>Enter Name:</label>

<edittext id="name" MaxLength="10" Width="10"/>
</pane>
<pane Orientation="horizontal">
<label>Choose Color:</label>
<colorbutton id="colorbtn" AllowTransparent="true"/>

  </pane>
</dialog>

</root>

STEPS
run the GENDLG script
again
when prompted to select
the dialog specification,
select NMCOLOR.XML in the
SMLDLG directory and click
[OK]
compare the dialog
window to its
specification
click [OK] on the Name
and Color dialog window
to end the script

Edittext and Colorbutton
The Name and Color sample dialog window shows
two additional types of controls, an edittext and a
colorbutton.  An edittext control allows the user to
enter and/or edit a text string.  The MaxLength at-
tribute specifies the maximum allowed length of the
string in characters, while the Width attribute speci-
fies the width of the editable field (in “typical”
characters).  Text is aligned to the left side of the
field by default.  To right-align the text, use the Jus-
tify attribute with the value “right”.  The edittext
control does not have a built-in label.

Pressing the colorbutton control opens a standard
Color Editor window to allow the selection of a color

from a palette or by specifying
RGB, HIS or other color val-
ues.  The selected color is
shown on the colorbutton after the selection dialog
is closed.  The selected color is maintained in a
COLOR class structure as red, green, and blue val-
ues (each 0 to 100) and an optional transparency value
(also 0 to 100).  The colorbutton control does not
have a built-in label.



Building Dialogs in SML

page 14

Using Tabbed Pages
STEPS

run the GENDLG script
again
when prompted to select
the dialog specification,
select FLOWPATH.XML in the
SMLDLG directory and click
[OK]
click on each of the
panel tabs to examine
the included controls
compare the dialog
window to its
specification
click [OK] on the Flow
Path and Buffer Zone
dialog window to end the
script

If you are creating a dialog window with many con-
trols, you can group controls together on separate
tabbed panels.  To do so, you first create a book ele-
ment and create one or more page elements inside it.
Each page element corresponds to a tabbed panel.
The Name attribute value that you assign for each
page provides the text that is placed on the panel’s
tab.  Controls can be placed and arranged within a
page just as in the main dialog or in any layout ele-
ment.

The Flowpath sample dialog provides an example
based on the control dialog for the Flowpath script,
one of the sample tool scripts distributed with
TNTmips.  The two panels of this dialog are illus-
trated below, and the dialog specification is shown
on the facing page.  This dialog places the book of
tabbed pages immediately inside the dialog element,
but the book could be placed inside any layout ele-
ment (except directly inside another book element).
One page includes a number of different types of
controls for general toolscript operations, while the
other page provides a set of colorbuttons to desig-
nate colors for different vector overlays created by
the script.

The FLOWPATH tool script
performs watershed analysis
operations on an elevation
model shown in a View
window, using seed points
placed in the window
interactively by the point tool
invoked by the script.



Building Dialogs in SML

page 15

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM “smlforms.dtd”>
<root>
<dialog id="flowpath" Title="Flow Path and Buffer Zone">
<book>
<page Name="Controls">
<pane Orientation="horizontal">
<pushbutton Name="Save" Icon="FILE_SAVE"

ToolTip="Save Output Layers..."/>
<pushbutton Name="Remove" Icon="CONTROL_SUBTRACT_CYAN"

ToolTip="Remove Output Layers"/>
<pushbutton Name="Number of Seedpoints..."/>

</pane>
<pane Orientation="vertical">
<togglebutton id="btnSnap" Name="Move Seed Point to

Flow Path" Selected="false"/>
<togglebutton id="btnFlow" Name="Compute Flow Path"

Selected="true"/>
<togglebutton id="btnBasin" Name="Compute Upstream

Basin" Selected="true"/>
<togglebutton id="btnBuffer" Name="Compute Buffer Zone"

Selected="false"/>
</pane>
<pane Orientation="horizontal">
<label>Buffer Distance: </label>
<editnumber id="buffDist" Width="5" Default="100"

Precision="0" MinVal="0"/>
</pane>

</page>
<page Name="Colors" Orientation="vertical">
<pane Orientation="horizontal">
<colorbutton id="fcolor"/>
<label>  Flow path color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bacolor"/>
<label>  Basin color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bucolor"/>
<label>  Buffer zone color</label>

</pane>
<pane Orientation="horizontal">
<colorbutton id="bocolor"/>
<label>  Extents box color</label>

</pane>
</page>

</book>
</dialog>

</root>

Specification for Flowpath Dialog



Building Dialogs in SML

page 16

STEPS
choose File / Open /
*.SML File... from the
SML editor window
select HELLOXML1.SML from
the SMLDLG directory
examine the script
repeat, but this time
select HELLOXML2.SML from
the SMLDLG directory
run the second script
press [OK] on the Hello
World sample dialog
window to end the script

Now that we have introduced the most common com-
ponents of a dialog and the structure of the dialog
specification, we can begin to examine how to use a
specification with an SML script.  The dialog speci-
fication must be read and interpreted when the script
is run to create an XML document structure in
memory.  This structure is an instance of the class
XMLDOC.  The specification can either be in a sepa-
rate file or embedded in the script.  Different
XMLDOC class methods are used in these two situ-
ations to ingest the specification and assign it to the
class instance.  The two scripts for this exercise
implement the Hello World sample dialog and illus-
trate these two approaches (script excerpts below).

Script helloXML1.sml ingests the specification from
a separate file in the same directory using the

Read(xmlfile$) class
method in XMLDOC.

This method reads the file and parses the text to
create the XML structure in memory.  The filename
passed to the Read() method must include the full

directory path to the file as well as the file extension.
The filename string is constructed in this example
by a string expression using the script’s CONTEXT
class structure.  The class member _context.ScriptDir
provides the path to the directory containing the cur-
rent SML script.  The string expression concatenates
the path with the name of the file.

The sample script helloXML2.sml has the dialog
specification embedded within it, assigned to a string

variable.  Note the single quotation marks en-
closing the specification,
which enable multiple
lines of text to be used

within the assignment statement.  The string vari-
able is then passed to the XMLDOC class method
Parse(xml$), which interprets the text and creates
the XMLDOC class instance in memory.

Using an XML Dialog Specification

# helloXML2.sml

class STRING xml$;
xml$='<?xml version="1.0"?>
<root>
<dialog id = "hello" title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>';

class XMLDOC dlgdoc;
dlgdoc.Parse(xml$);

# helloXML1.sml

class STRING xmlfile$;
xmlfile$ = _context.ScriptDir + "/hello.xml";

class XMLDOC dlgdoc;
dlgdoc.Read(xmlfile$);



Building Dialogs in SML

page 17

STEPS
examine the second half
of the HELLOXML2.SML

script

Creating and Opening the Dialog Window

class XMLNODE dlgnode;
dlgnode = dlgdoc.GetElementByID("hello");

class GUI_DLG dlgwin;
dlgwin.SetXMLNode(dlgnode);
dlgwin.DoModal();

The XML structure created in memory by the Read()
or Parse() method of class XMLDOC contains all of
the elements in the dialog specification in a hierar-
chical, tree-like structure.  Each element, including
the dialog element itself, can also be thought of as a
“node” in the structure.  To create and open the dia-
log window, your SML script must retrieve the dialog
node from the parsed XML document structure and
identify it as the source for the dialog window.

The two scripts you ran on the previous page differ
only in how they ingest the dialog specification; the
second half of each (excerpted below) is identical,
and implements the steps outlined above.  The dia-
log node in the Hello World specification has the
unique id attribute “hello” that can be used to re-
trieve it.  This is done using
the XMLDOC class method
GetElementByID(), which
returns an instance of class
XMLNODE.  This is the
class that represents any
given node in a parsed XML document.  In this script
the dialog node is represented by the class variable
dlgnode.

The dialog window itself is an instance of class
GUI_DLG, represented in this script by class vari-
able dlgwin.  The class method SetXMLNode() in
class GUI_DLG is used to identify the dialog node
in the XML structure as the source for the dialog
window.  The final script statement uses the
GUI_DLG class method DoModal() to create and
open the dialog window.  This method opens the
window as a modal dialog, meaning that once the
dialog is opened, no other parts of the script can be
executed until the dialog is closed.  Modal dialogs
are easy to manage and are appropriate for selecting
objects and/or gathering processing parameters for
standalone SML processing scripts.

A modal dialog window
created using an XML
specification is automatically
provided with OK and
Cancel buttons.

Dialog controls have a
common set of attributes to
allow you to control their
alignment and resize
behavior:

HorizAlign (“Left”, “Right”, or
“Center”) and VertAlign
(“Top”, “Center”, or “Bottom”)
let you control the alignment
of the controls within their
parent pane.

HorizResize and VertResize
determine how the control
behaves when the parent is
resized (such as when the
user  resizes the dialog
window).  Possible values
are “Expand”, “Fixed”, and
“Relative” (keeps same
proportion  of space).



Building Dialogs in SML

page 18

Trapping XML Errors
STEPS

choose File / Open /
*.SML File... and select
XMLERRS1.SML from the
SMLDLG directory
run the script; note the
error message reporting
that the XMLNODE
parameter is NULL
choose File / Open
again, and select
XMLERRS2.SML

in the Message window
that opens, press the
Details button
press the [OK] button on
both message windows
to end the script

<radiogroup id="processgp" Default="entire">
<item Value="entire" Name="Entire Scene"/>
<item Value="polygon" Name="AOI Polygon"/>
<item Value="manual Name="Manual Selection"/>

</radiogroup>

The closing quotation mark
is missing for the Value
attribute.

numeric errXML;
class XMLDOC dlgdoc;
errXML = dlgdoc.Read(xmlfile$);

if (errXML < 0) {
PopupError(errXML);
Exit();
}

In order for SML to interpret a dialog specification
correctly, the specification must be well-formed,
meaning that it uses the proper notation for tags and
attributes and has the nested structure expected of
an XML document.  The syntax of the dialog speci-
fication is checked by the Read() or Parse() class
method when the script is run, but XML syntax er-
rors are not automatically reported to you by SML.
The excerpt of script xmlerrs2.sml below shows how
you can get an XML syntax error report.

The Read() and Parse() class methods return a nu-
meric value that is an error code (a negative value) if
there are XML syntax errors or 0 if there are no er-
rors.  The sample script assigns the returned value to
a numeric variable errXML, then checks the value of
the variable.  If errXML is less than 0, the error value

is passed to the PopupError() function,
which opens a Message window reporting

that there is an XML syntax error.  If you press the
Details button on this window, a second message
window opens and lists the errors.

The specification read by the two
sample scripts in this exercise
(excerpted below) is a copy of
the groupbox/radiobox dialog
specification described previ-

ously, but the closing
double quotation mark
is omitted for the Value
attribute value in the
third radiogroup item.

S u b s e q u e n t
portions of the
specification
cannot be in-
t e r p r e t e d

correctly, triggering a number of error listings in the
details message window.



Building Dialogs in SML

page 19

STEPS
choose File / Open /
*.SML File... and select
XMLERRS3.SML from the
SMLDLG directory
run the script; note the
error messages that
appear
press [OK] on the
message windows to
end the script

<?xml version="1.0"?>
<root>
<dialog id="dlg" Title="Select Process">

class XMLNODE dlgnode;
dlgnode = dlgdoc.GetElementByID("radiogp");

if (dlgnode == 0) {
PopupMessage("Could not find dialog node in XML document");
}

The dialog id attribute value
in the specification does not
match the id value expected
by the script.

Even if the dialog specification is well-formed XML,
there may be errors in the use or spelling of attribute
names and values that prevent the dialog  window
from being constructed correctly.  If you are using
the SML editor or a text editor to create the dialog
specification, you should carefully examine the spell-
ing and use of attribute names and values to ensure
that they are consistent within the specification and
script and that they conform to the  usage rules out-
lined in the Reference Guide to SML Dialog
Specifications in XML.  The Guide lists the attributes
that are predefined for use with each dialog element.
Valid values are also listed for those attributes that
have a fixed set of possible values.

Problems with at-
tribute names may
also prevent the dialog
from opening at all.  In
the example used for this exercise, the dialog ele-
ment id values in the dialog specification and the
SML script do not match.  The script excerpt shown
here illustrates how the script can explicitly check

Trapping Dialog ID Errors

Performing a manual syntax
check from the SML editor
window (Syntax / Check...)
does not evaluate the XML
syntax of any embedded or
referenced dialog
specification.

for this condition.  The GetElementByID()
method in class XMLDOC returns a valid
instance of class XMLNODE if the speci-
fied dialog id is found.  If it is not, the
class instance returned is empty.  In SML an empty
class instance can be represented by the numeric
value 0.  The script excerpt compares the returned
class to 0 and if the comparison is true it opens a
message window stating that the dialog node was
not found.



Building Dialogs in SML

page 20

Using an XML Editor

<!-- SMLFORMS DTD Version 2.0 -->
<!-- For use with SML Dialog Specifications in XML -->
<!-- MicroImages, Inc. -->

<!-- ======================================= -->
<!--             MAIN ELEMENTS               -->
<!-- ======================================= -->

<!ELEMENT root (dialog | script | strings)* >
<!ELEMENT script (#PCDATA)>
<!ELEMENT dialog (book | pane | groupbox | label | pushbutton |
togglebutton | colorbutton | edittext | editnumber | radiogroup |
combobox | menubutton | listbox | canvas)*>

Excerpt showing
the beginning lines
of the SMLFORMS
DTD file, defining
the main elements
<root>, <script>,
and <dialog>.

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog>
</dialog>

</root>

Dialog Specification Template File
(dlgtempl.xml) containing the
Document Type Declaration and
<root> and <dialog> elements.

You can create embedded dialog specifications directly with the SML editor or
create separate dialog specification files with any text editor.  But you may find it
easier to create your specifications using a specialized XML editor.  A number of
free, shareware, and commercial XML editors are available for download via the
World Wide Web.  Nearly all XML editors can check that the XML is well-formed,
and many provide a graphical Tree View of the document structure that simplifies
editing.  Some editors can compare the XML to a document model that specifies
the available tags, their allowed attributes, and the relationships permitted be-
tween elements (for example, the only allowed child element of a combobox is an
item).  An XML file that conforms to its document model is said to be valid, and
the checking procedure is called validation.  One widely-supported form of XML
document model is a Document Type Definition (DTD) file.  MicroImages has
created a DTD file for SML dialog specifications (smlforms.dtd) that can be found
in the SMLDLG directory.  An excerpt of this file is shown below.

MicroImages has also provided a Dialog Specification Template File (dlgtempl.xml,
shown below) that you can open in a validating XML editor to create your dialog
specifications.  The template includes the root and dialog elements preceded by a
Document Type Declaration that defines the name of the root element (<root>)
and the name of the DTD and its location (in the same directory as the XML file
being edited).  Most validating XML editors read the DTD and provide menus of
valid elements that can be inserted into the current element, menus of attributes

available to be added for
each type of element, and
menus of attribute values
for those attributes that
have a fixed set of valid
values.



Building Dialogs in SML

page 21

Programming the OK and Cancel Buttons
STEPS

choose File / Open /
*.SML File... and select
BONJOUR1.SML from the
SMLDLG directory
run the script
select a language from
the listbox
press [OK] on the
Bonjour! sample dialog
window; a translation of
“Hello!” is printed to the
Console window in the
selected language, and
script execution ends
repeat using a different
language
examine the callback
procedure in the script

One main role of a dialog window is to record pa-
rameter choices and values and pass them on for use
by the SML script after the dialog closes.  There are
several ways in which you can use the default OK
and Cancel pushbuttons on a modal dialog to man-
age this interaction.

The DoModal() class method of the GUI_DLG class,
which you use to open a modal dialog, returns a nu-
meric value when the dialog is closed by either the
OK or Cancel button.  Pressing OK returns a value
of 0 and pressing Cancel returns a value of -1.  A
simple way to carry out script actions using these
buttons is to check the value returned by this method
and take alternative actions based on this value.

The simple objective in this example is to print
“Hello” to the console in the selected language when
the OK dialog button is pressed.  As shown in the
script excerpt below, the value returned by the
DoModal() method is stored in a numeric variable
(dlgreturn), and its value is then checked.  If the value
is 0, the value of the string variable language$ is read
from the dialog’s
listbox (more on that
later) and used to set
the text to be printed
to the console.  If the
value of dlgreturn is
-1, the Exit function
is called to exit the
script.

dlgreturn = dlg.DoModal();

if (dlgreturn == 0) {
local class STRING language$;
language$ = dlg.GetCtrlValueStr("listbox");

if ( language$ == "English" ) then
print("Hello!");

else if ( language$ == "French" ) then
print("Bonjour!");

else if ( language$ == "German" ) then
print("Hallo!");

else if ( language$ == "Spanish") then
print("Hola!");

}

if (dlgreturn == -1) {
Exit();
}



Building Dialogs in SML

page 22

Specifying Callbacks for Dialog Buttons
STEPS

choose File / Open /
*.SML File... and select
BONJOUR2.SML from the
SMLDLG directory
run the script
select a language from
the listbox
press [OK] on the
Bonjour! sample dialog
window; a translation of
“Hello!” is printed to the
Console window in the
selected language, and
script execution ends
repeat using a different
language
examine the callback
procedure in the script

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog id="hello" Title="Bonjour!" OnOK="SayHello()">
<pane>
<groupbox Name="Language" ExtraBorder="4">
<listbox id="listbox" SelectStyle="single" Height="3"

Default="French">

A more flexible method of programming the default
pushbuttons on a dialog is through the use of call-
backs, which are pointers to procedures or functions
defined in the SML script.  You can write a user-
defined function or procedure to be carried out by
the OK button and one to be carried out by the Can-
cel button.  You associate these procedures with their
respective buttons by assigning them as attributes of
the dialog element in the dialog specification.  For a
modal dialog, the dialog element has OnOK and
OnCancel attributes; modeless dialogs have OnOK,
OnApply, and OnClose attributes.

The script version for this exercise includes a proce-
dure called SayHello() to print “Hello” in the selected
language.  The dialog specification assigns this pro-
cedure name to the OnOK attribute to map this code
to the OK pushbutton.  An OnCancel callback is not
required in this instance, as the script will automati-
cally exit after the Cancel button is pressed and the

DoModal() class
method returns.

proc SayHello ()
{
local class STRING language$;
language$ = dlg.GetCtrlValueStr("listbox");

if ( language$ == "English" ) then
print("Hello!");

else if ( language$ == "French" ) then
print("Bonjour!");

else if ( language$ == "German" ) then
print("Hallo!");

else if ( language$ == "Spanish") then
print("Hola!");

}



Building Dialogs in SML

page 23

Using the Script Tag
STEPS

choose File / Open /
*.SML File... and select
BONJOUR3SML from the
SMLDLG directory
run the script as you did
in the last exercise

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
<dialog id="hello" Title="Bonjour" OnOK="SayHello()">
...  [layout and control specifications omitted] ...

</dialog>
<script>
<![CDATA[
proc SayHello () {
clear();
local string language$;
language$ = dlg.GetCtrlValueStr("listbox");

if ( language$ == "English" ) then
print("Hello!");

else if ( language$ == "French" ) then
print("Bonjour!");

else if ( language$ == "German" ) then
print("Hallo!");

else if ( language$ == "Spanish") then
print("Hola!");

}
]]>

</script>
</root>

beginning CDATA delimiter

ending CDATA delimiter

The SML code for your
callbacks might contain
characters (such as <, >,
and &) that have special
significance in XML syntax.
For this reason the SML
code should be enclosed
within CDATA delimiters as
shown.  They tell the XML
parser that the enclosed
section should be treated
as regular text (“character
data”) that should not be
interpreted with XML
syntax rules.

The SML code executed by a dialog’s callbacks can
reside in the main SML script (as in the previous
exercise) or within the dialog specification itself.  The
script element in a dialog specification is defined as
a container for SML code.  This is a main-level ele-
ment within the root element of the XML text  The
script element can include the code for one or more
callback procedures.  Any global variables or func-
tions you define in the main SML script are also
available for use by the code in the dialog
specification’s script element.

The example in this exercise uses the same dialog as
the preceding exercise.  The only difference here is
that the SayHello() procedure is in the script element
of the dialog specification (excerpted below).



Building Dialogs in SML

page 24

Getting Values from the Dialog
STEPS

choose File / Open /
*.SML File... and select
GETDATA.SML from the
SMLDLG directory
run the script
in the TIGER Road
Options dialog, set the
Road processing options
and edit the Buffer
Distance field, then press
OK
note the dialog values
printed to the SML
Console Window
examine the script
examples of the four
methods of reading
values from the dialog
press [OK] on the TIGER
Road Options sample
dialog window to end the
script

The previous three exercises used one of several
available methods for getting control values and set-
tings from the dialog.  The script for this exercise
shows all of these methods using the TIGER Road
Options dialog described on a previous page as an
example. When you press the OK pushbutton, a pro-
cedure assigned to the dialog’s OnOK callback prints
the control value settings to the SML console win-
dow.  The settings are retrieved in four different ways
that are described briefly below.

The first approach gets all of the dialog control set-
tings at once using the GetValues() class method in
class GUI_DLG (the dialog window class).  The val-
ues are returned as an instance of class
GUI_FORMDATA, which you must have previously
declared.  You can then use GetValueNum() and
GetValueStr() methods in the latter class to read out
the stored values (as a number or as a string, respec-
tively) as needed.

The second approach uses methods in class
GUI_DLG to get the value for each control from the
dialog individually using the control’s id:
GetCtrlValueNum(id) and GetCtrlValueStr(id).

The third and fourth approaches use the
GetCtrlByID(id) method in class GUI_DLG to
get a handle for each control, then a GetValue(),
GetSelected(), or other similar method from
the individual control class to get the control’s
setting.  The control handle can be stored as a
control class instance that is then used to get
the setting, or the methods to get the control

handle and its value can be
strung together, omitting
the control handle class
variable (a more compact
but perhaps less obvious
approach).



Building Dialogs in SML

page 25

Changing Control Settings in Callbacks
STEPS

choose File / Open /
*.SML File... and select
AREACALC.SML from the
SMLDLG directory
examine the procedure
and function definitions
in the script
run the script
enter an area value in
the upper numeric field
select input and output
area units from the
combobox controls
press [OK] to compute
the output area
when you are finished,
press [Cancel] to close
the dialog and exit the
script

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
  <dialog id="areacalc"

Title="Area Unit Conversion"
OnOK="return Recalculate()">

The AREACALC script also
prints the output units, scale
factor for the units
conversion, and the output
area value to the Console
Window.

You can also use callbacks for individual controls to
show the results of computations in the dialog and
to change the status of other controls.  The script for
this exercise performs area unit conversions using a
value you enter in an editnumber control and input
and output units you select from combobox controls.
The output area is computed and shown in an
editnumber control when you press the [OK] button.
The output editnumber is set to be read-only, which
disables manual editing of the output value.

You can change control settings using class meth-
ods in either the dialog window’s class (an instance
of GUI_DLG) or the individual control classes.  The
OnOK callback function for this dialog window
[called Recalculate()] uses the method
SetCtrlValueNum(id) in class GUI_DLG to set the
value for the output area editnumber control.  The
callback procedures for the input area editnumber
control and the two combobox
controls use the ClearValue()
method in class
GUI_CTRL_EDIT_NUMBER
to blank the editnumber control
when you change any of the
other control settings.

In order to force the Area Unit Conversion window
to stay open after the OK button is pressed, the OnOK
callback for the dialog element is defined in the script
as a function that returns the value 0 (after its other
operations are complete).  In order to use this return
value, the attribute assignment for the OnOK call-
back in the dialog specification must have the
keyword “return” preceding the
function name, as shown in the
excerpt to the right.



Building Dialogs in SML

page 26

Managing a Complex Dialog Window
STEPS

choose File / Open /
*.SML File... and select
PANSHARPCOMP.SML from
the SMLDLG directory
run the script
in the Make Pan-
Sharpened Color
Composite window,
press [Red...]
use the Select Object
dialog to navigate into
the BIGPINE Project File in
the SMLDLG directory and
select raster BAND_3
press [Green...] and
select raster BAND_2
press [Blue...] and select
raster BAND_1
press [Pan...] and select
raster BAND_8
choose a Color Blending
Mode and a Composite
Type
press [OK] to name an
output color composite
raster and run the
process
examine the script

The script in this exercise provides an example of a
fully-functioning processing script that creates a rela-
tively complex custom dialog window to manage its
inputs.  The script creates a pan-sharpened color-
composite raster from three bands of a multispectral
image and a higher-resolution panchromatic
(grayscale) image, each of which is selected using a
pushbutton.  Read-only edittext controls are used to
show the file and object names for each of the se-
lected input objects.  The dialog provides
togglebuttons that allow you to apply a saved con-
trast table (if present) to each input raster, a listbox
to select from three color blending modes, and a
combobox to choose the bit-depth of the output color
composite.

The dialog specification for the Make Pan-Sharp-
ened Color Composite window is embedded in the
SML script.  The dialog controls and their callbacks
are designed to lead the user through the controls in
proper sequence.  Only the Red... and Cancel but-
tons are intially active.   (The dialog specification
sets an Enabled attribute to 0 for the Green..., Blue...,
and Pan... pushbuttons and for all of the Apply Con-

trast toggle buttons so that
these controls are initially
dimmed and disabled.  An
OnOpen callback for the dia-
log window disables the OK
button when the window first
opens.)    The OnPressed call-
back for the Red... pushbutton
enables its Apply Contrast
toggle button as well as the

Green... pushbutton.  Pressing each successive in-
put raster button activates the next one, until pressing
the Pan button activates the dialog’s OK button.



Building Dialogs in SML

page 27

Suppressing Default Pushbuttons
STEPS

choose File / Open /
*.SML File... and select
AREACALCUNITS.SML from
the SMLDLG directory
examine the procedure
and function definitions
in the script
run the script

Although dialog windows are supplied with action
pushbuttons by default, you may want to use your
own pushbuttons with more appropriate names in
their place.  The dialog element in the dialog specifi-
cation has a Buttons attribute that can be used to
specify which of the default buttons to use on the
dialog.   If you use this attribute but assign it an empty
string (simply a pair of quota-
tion marks as shown in the
specification excerpt), none of
the default buttons are supplied.
In this version of the Area Unit
Conversion script, Calculate
and Close buttons are used in
place of the default OK and
Cancel buttons.

The input and output units
comboboxes are also auto-
matically populated with area
choices in this script version,
rather than having menu items
explictly listed in the dialog specification.  The
GUI_CTRL_COMBOBOX class has an
AddUnitItems() method that allows you to specify
the type of unit to use (in this case, area units); the
combobox is then automatically supplied with all of
the unit names that are directly supported in the TNT
products.  This method must be called after the
comboboxes have been created by the
SetXMLNode() method on the dialog.  To do so, the
script makes use of another dialog class method,
SetOnInitDialog().  This method lets you identify a
procedure to be called when the modal dialog is cre-
ated but  before it is opened by the DoModal()
method.  In this example an OnInitDialog() proce-
dure is used to get the control handles required in
the control callbacks and to add the area items to the
two area unit comboboxes.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
  <dialog id="areacalc"

Title="Area Unit Conversion"
Buttons="">

In addition to area units, you
can add standard lists of the
following types of units to a
combobox: length (distance),
plane angle, time,
temperature, volume, and
mass.

The width of pushbuttons
relative to their text can be
controlled using the
HorizResize attribute of the
pushbutton element.  If not
specified, this attribute
defaults to “Expand”, which
allows the button to fill the
available horizontal space in
the parent pane.  If you
instead set this attribute to
“Fixed”, the button width will
be slightly larger than the
width of its text.



Building Dialogs in SML

page 28

Creating a View in a Dialog Window
STEPS

select File / Open /
*.SML File and select
VIEW.SML from the SMLDLG

directory
run the script using as
input the raster object
_8_BIT from the CB_COMP

Project File in CB_DATA

sample data directory
press [Close] to close
the window

proc OnInitDialog ()
{
local class GUI_LAYOUT_PANE viewpane; # layout pane to contain the view
local class widget viewpaneWidget; # widget for pane to serve as parent for the view
local class GRE_GROUP viewgp; # group to be shown in the view
local class GRE_LAYER_RASTER tempLayer; # raster layer in the group

viewpane = dlgview.GetPaneByID("viewpane"); # get handle for layout pane from dialog
viewpaneWidget = viewpane.GetWidget(); # get Xm widget for pane

viewgp = GroupCreate();    # create display group
tempLayer = GroupQuickAddRasterVar(viewgp, Rast);   # add the raster to the group

  # create 2D view of group in dialog
view = viewgp.CreateView(viewpaneWidget, "View", 400, 200, "NoDftMarkButtons,

NoStatusBar,NoLegend");

# set white as background color for view
color.red = 100; color.green = 100; color.blue = 100;
view.BackgroundColor = color;
}

A dialog window created by an SML script can dis-
play input or output objects in a geospatial view.  The
script for this exercise provides a simple example of
the required steps.

A dialog specification cannot directly specify a view;
rather, it should create a layout pane (called
“viewpane” in this example) that will subsequently
contain the view.  An OnInitdialog() procedure (see
previous page) is then used to set up the view within

this layout pane.  The sample code for this
procedure is shown below.  The procedure
creates a spatial group, adds the selected
raster object to the group, and calls a method
on class GRE_GROUP to create a view to
display the group.  This method specifies
the parent of the view along with its height
and width in screen pixels.  The parent of
the view must be an instance of class WID-
GET, the base class for the Motif dialog
components used in X Windows, which are
the hidden underpinnings of the GUI classes
in SML.  Prior to creating the view, the pro-
cedure calls a method on class
GUI_LAYOUT_Pane to get a widget cor-
responding to the pane to serve as the parent

for the view.  Another procedure called when the dia-
log opens is used to draw the view.



Building Dialogs in SML

page 29

A Complex Dialog with a View
STEPS

select File / Open /
*.SML File and select
BOXCAR3.SML from the
SMLDLG directory
run the script, selecting
for input rasters RED,
GREEN, and BLUE from the
CB_TM Project File in the
CB_DATA directory
press [Process] on the
Boxcar Classification
window to run using the
default values
study the script to see
how the various window
components are
constructed and how
actions are controlled

The script for this exercise presents a more complex
sample dialog that incorporates process controls and
a geospatial view.  The sample application is an in-
teractive “boxcar” classification of cells in a set of
three image bands (raster objects).  Numeric fields
are provided for the user to enter minimum and maxi-
mum cell values for each input raster.  When the
Process button is pressed, the script identifies cells
whose value sets fall within all of the specified ranges.
Default limit values are automatically computed from
the raster statistics when the input rasters are selected,
and an OnInitDialog() procedure is used to set these
default values before the dialog opens.

The view in the dialog initially displays a temporary
composite raster created from the three input ras-
ters.  Each time the Process button
is pressed, a temporary binary clas-
sification raster with color palette
is created and displayed over this
composite to portray the results of
the classification.  Cells with val-
ues within all of the specified
ranges are  shown in yellow in the
classification overlay.   A read-only
text field below the range controls
is used to show status messages.
The Clear button clears the previ-
ous clasification results, while the
Save button saves the temporary
classification raster to a Project
File.

In the dialog specification, the
ChildSpacing attribute is used for
the pane containing the
pushbuttons to set the spacing in
screen pixels between the
pushbuttons (the “children” of the
layout pane).



Building Dialogs in SML

page 30

Dynamically Adding Dialog Components
The script in this exercise is designed to modify cell
values in a set of multispectral image bands to sup-
press the contribution of vegetation.  Most processing
parameters are set on the main dialog window (shown
below).  However, each band to be processed must
also be corrected for additive brightness effects of
atmospheric haze by subtracting a “dark pixel value”
(determined by the user) from each cell value.  These
values are set using a second dialog opened by the
OnPressed callback procedure [SetDP()]  for the Set
dark pixel values... pushbutton. The Set Dark Pixel
Values window lists the bands (filename and object
name) and provides an editnumber field showing a
default dark pixel value (the minimum cell value for
the raster).  The tricky part is that the number and
selection of bands to be processed can vary.

The SetDP() procedure includes only a skeletal dia-
log specification with the dialog title, labels at the
top, and the groupbox with a contained pane to hold
all other controls.  The procedure parses this skeletal
specification, then modifies the XML structure in
memory to add a series of horizontal panes, each
containing a text label and an editnumber control.
These changes are made using methods in class
XMLNODE: NewChild(), SetAttribute(), and
SetText().  The completed dialog is then opened.

STEPS
choose File / Open /
*.SML File... and select
DEVEG.SML from the SMLDLG

directory
run the script
in the dialog window that
opens, press [select
NIR...], navigate into the
INYOTM Project File in the
SMLDLG directory, and
select BAND_4
press [Select RED...]
and select BAND_3
turn on the Devegetate
NIR and Devegetate
RED toggle buttons
type “3” into the “Number
of additional bands to
devegetate” field and
press <Enter>
press [Select Bands...]
select BAND_1, BAND_2,
and BAND_5
press [Set dark pixel
values...]
press [OK] in the Set
Dark Pixel Values
window that opens
press [Select Output
File...] and name a new
Project File to contain
the output objects
press [Directory...] and
select the directory in
which TNTmips is
installed
press [OK] to start
processing



Building Dialogs in SML

page 31

Raster Intervals Script Dialogs
STEPS

choose File / Open /
*.SML File... , navigate to
the STANDALONE directory
in the SML sample script
collection, and select
RASTERINTERVALS.SML

run the script
press [Input Raster...] on
the Raster Intervals
window
select raster DEM from
the BIGPINE Project File in
the SMLDLG directory
press [Run...]
press [Preview result...]
on the Distribution
window
press [Close] on the
Preview window
press [OK] on the
Distribution window
use the Select Object
dialog to name a new
Project File and output
raster object
press [Exit]  on the
Raster Intervals window

The Raster Intervals sample script creates several dia-
log windows including a preview of the result, using
methodology introduced on the preceding several
pages.  This script categorizes a grayscale raster into
the specified number of value intervals using either
equal value range or equal cell count per interval.

The main dialog window provides the basic input
controls and is set up by a complete dialog specifi-
cation embedded in the script.  Pressing the Run
button calls the setUpIntervals() procedure in the
script, which computes the required intervals and
opens a Distribution window that shows the numeri-
cal values for the resulting range intervals and allows
editing of the range boundaries.  Since the number
of intervals can vary, the procedure includes only a
skeletal specification for this window.  The XML
structure for this dialog is modified on-the-fly by this
procedure (as described on the previous page) to pro-
vide the controls and value labels for each interval.

Pressing the Preview result... button on the Distri-
bution window calls the onPreview() script
procedure, which
creates and opens
a Preview window
that displays a
temporary raster
with values cat-
egorized using the
current distribu-
tion parameters.
The techniques
used to create and
populate this view
were described on
pages 28 and 29.



Building Dialogs in SML

page 32

Using a Drawing Canvas

press [Close] on the
Dialog with Drawing
Canvas window
examine the script and
its dialog specification
choose File / Exit from
the SML Editor window

STEPS
choose File / Open /
*.SML File... , navigate
back to the SMLDLG

directory and choose
DRAWDLG.SML

run the script
note the graphics and
text drawn in the dialog
window created by the
script

<?xml version="1.0"?>
<root>
<dialog id="target" Title="Dialog with Drawing Canvas" Buttons=""

OnOpen="OnOpenDlg()">
<canvas id="canvas" Height="150" Width="225"/>
<pushbutton id="closeBtn" Name=" Close " VertResize="Fixed"
HorizResize="Fixed" HorizAlign="Right" OnPressed="OnClose()"/>

</dialog>
</root>

In some instances you may want to design a dialog
window that incorporates a graph  created from your
input data or from the process output, or some other
graphic.  Various types of graphics and text can be
drawn within a drawing canvas control in the dia-
log.  To do so you use the canvas element, which
maps to the GUI_CANVAS class in SML, in the dia-
log specification.

The simple modal dialog created by the DRAWDLG.SML

sample script illustrates the use of a drawing canvas.
The dialog specification for this window is shown

at the bottom of the page.   The canvas element has
Height and Width attributes that you must use to
set the dimensions of the canvas in screen pixels.

The sample script draws a filled white rectangle,
filled red and open yellow circles, and vertical text
within the canvas.  Placement of these elements in
the canvas is referenced to an X-Y coordinate sys-
tem with units of screen pixels and an origin (0,0
position) at the upper left corner of the canvas.

Drawing within the canvas requires a graphics con-
text (class GC) that is created using the CreateGC()
method of the GUI_CANVAS class.   The GC class
provides methods for drawing points, polylines, vari-
ous geometric shapes, and text, as well as methods
to set colors, fonts, and font sizes.  The class meth-
ods used to draw the graphics in this dialog are shown
in the illustration.  In this script the graphic elements
are drawn in an OnRedraw() procedure that is called
within the dialog’s OnOpen callback.

Filled
rectangle

[ FillRect() ]
Filled circle

[ FillCircle() ]

Circle [ DrawCircle() ]
Text (rotated)
[ DrawTextSimple() ]



Building Dialogs in SML

page 33

STEPS
choose File / Open /
*.SML File...  and select
AREACALCLOC.SML from the
SMLDLG data directory
examine the dialog
specification in the script

Localizing a Script Dialog

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>
 <strings language="enu"> <!-- English -->
 </strings>
 <strings language="frc"> <!-- French -->

<string id="Area Unit Conversion">Conversion des unités d&apos;aire
</string>

<string id="Enter area value:">Porte une valeur d&apos;aire:</string>
<string id="Select output units:">Choix d&apos;unité nouvelle:</string>
<string id="Area in selected units:">L&apos;aire dans les unités choisis:

</string>
<string id=" Calculate "> Calculer </string>
<string id=" Close "> Fermer </string>

 </strings>
  <dialog id="areacalc" Title="Area Unit Conversion" Buttons=""

ResourceLookup="true">

Dialog window when script is
run with TNTmips set to use
the French language
interface.

Dialog window when script
is run with TNTmips set to
use the English language
interface.

A script dialog can be set up to automatically local-
ize the dialog text when the script is run under
different TNTmips language interfaces (locales).  The
sample script for this exercise includes English and
French localizations.

Setting the ResourceLookup attribute of the dialog
element to “true” replaces any text element in the
dialog with its translated text based on the current
language locale.  Translations for custom text must
be provided within the dialog
specification using string ele-
ments within strings sections,
with one section for each lan-
guage; an empty strings section
is used to identify the original
language of the dialog
text.  The id attribute for
each string element is
simply the original text
string.  In this example
translations are pro-
vided for six custom text strings (window title, labels,
and button names); the selections for the two stan-
dard area unit menus are automatically provided with
translations using the French language text resource
package provided with TNTmips. The apostrophe (single quote) is a special

character in XML.  The predefined string
“&apos;” is used to encode an apostrophe
in a text string in XML.



Building Dialogs in SML

page 34

Tool scripts and display control scripts are special-
ized scripts that are activated from within a standard
View window and allow continued interaction with
data being displayed.  These scripts are event-driven:
they consist primarily of prenamed procedures that
are called by events in the display window (such as
left or right mouse click).  If such a script requires a
custom dialog window, the open dialog must not in-
terfere with the processing associated with these
various events.  Modeless dialogs are therefore the
appropriate choice for these types of scripts.  The
tool script in this exercise provides a modeless dia-
log that is used to choose what type of element (point,
line, or polygon) will be selected by a left-click ac-
tion in the View.

A modeless dialog can be set up with a dialog speci-
fication just like a modal dialog, but different
GUI_DLG class methods are then used to initialize
and control the window.  A modal dialog is created
and opened in one step using the DoModal()
GUI_DLG class method, but for modeless dialogs
these steps are separate.  A CreateModeless() method
is used to create (initialize) the dialog, and Open()
and Close() methods are used to open and close it
when needed.

Tool scripts are explicitly activated by pressing the
script’s icon button on the View window’s tool bar
and are deactivated by selecting another tool (such
as the Recenter or Zoom tool).  The OnInitialize()
prenamed procedure is called automatically the first
time the tool is activated; this is the appropriate place
to process the dialog specification and create the
modeless dialog.  The dialog should be opened within
the OnActivate() procedure, which is called each time
the tool is activated, and closed within the
OnDeactivate() procedure, which is called when an-
other tool is selected.

left-click in the View to
select an element
close the Select Element
window
choose Options /  Scripts
/ Tool Scripts in the View
in the Customize Tool
Scripts window, click on
the Select Element entry
in the list and press the
Edit icon button to open
the SML window to show
the tool script
close the SML window
and Customize Tool
Scripts window when you
have finished examining
the script

STEPS
choose Main / Display
from the TNTmips menu
press the Open
Display icon
button on the
Display Manager,
navigate to the SML

sample data folder, and
choose TOOLGROUP from
the TOOLS Project File
press the Select
Element tool
script icon button
on the View window
toolbar
on the Select Element
window that appears,
use the radio buttons  to
choose which type of
element to select

Modeless Dialogs



Building Dialogs in SML

page 35

Using a Canvas with a Modeless Dialog
STEPS

press the Open
Display icon
button on the Display
Manager, navigate to the
SMLDLG sample data
folder, and choose
DEM_GROUP from the BIG

PINE Project File
press the Raster
Profile tool script
icon button on the
View window toolbar
left-click and drag to
draw a profile line in the
View; note the resulting
profile graphic in the
Raster Profile window
choose Options /  Scripts
/ Tool Scripts in the View
in the Customize Tool
Scripts window, click on
the Raster Profile entry
in the list and press the
Edit icon button to open
the SML window to show
the tool script
examine the cbRedraw()
procedure in the script
choose Display /  Exit /
from the Display
Manager

The Raster Profile tool script provides a line tool for
drawing a line in the View and a modeless Raster
Profile window that shows a graph of cell value (el-
evation in meters in this example) versus distance
along the profile line.   The profile is recreated and
redrawn whenever the profile line is changed or re-
drawn in the View (the callback for the line tool,
cbToolApply(), also calls the cbRedraw() procedure
that handles drawing the graphics).

The graphics context for a drawing canvas in a
modeless dialog window is automatically destroyed
whenever the window closes and even when the win-
dow loses focus (by making another window active).
For these reasons the graphics context for the can-
vas must be recreated each time the canvas is
redrawn.  Thus you will find the statement

gc = canvas.CreateGC()
near the beginning of the cbRedraw() procedure in
this sample script.



Building Dialogs in SML

page 36

Advanced Software for Geospatial Analysis

MicroImages, Inc.
 

MicroImages, Inc. publishes a complete line of professional software for advanced geospatial
data visualization, analysis, and publishing.  Contact us or visit our web site for detailed product
information.

TNTmips Pro  TNTmips Pro is a professional system for fully integrated GIS, image
analysis, CAD, TIN, desktop cartography, and geospatial database management.

TNTmips Basic TNTmips Basic is a low-cost version of TNTmips for small projects.

TNTmips Free  TNTmips Free is a free version of TNTmips for students and learning
professionals with small projects.

TNTedit TNTedit provides interactive tools to create, georeference, and edit vector, image,
CAD, TIN, and relational database project materials in a wide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD or
DVD at low cost.  TNTatlas CDs/DVDs can be used on any popular computing platform.

Index

S
M
L

D
I
A
L
O
G
S

book element........................................14
callback....................................22-26
canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 ,35
colorbutton....................................13,14
combobox.....................................8,27
control settings..................................25
dialog element.................................5,6,33
editnumber.... . . . . . . . . . . . . . . . . . . . . . . . . . .10,25
edittext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13,26
groupbox...................................................9
id attribute...........................6,7,19,24,25,33
item................................8,9,11,12,18
label...............................5,8,10-13,28,29,31
layout component.................................9,10
listbox..................................................8,11,26
menubutton..................................8,12
modal dia-
log...................................4,17,21,34
modeless dialog.................................4,34,35

page........................................14,15
pane.................................................10-12
Parse(xml$)... . . . . . . . . . . . . . . . . . . . . . . . . .16,17
popup dialog........................................3
pushbutton...............5,11,12,21,22,27,28
radiogroup............................................9
Read(xmlfile$).............................16,17
root element..........................................5,20
script element...........................................23
togglebutton.................................7,12,26
view..............................................28,29,31
widget............................................28
XML.......................................................................4,5

attributes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
editors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
elements.............................................5
errors............................................18-19
tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 ,7
v a l i d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
well-formed.................................6,18,20



Reference Guide to SML Dialog Specifications in XML 
This document is a reference to the creation of custom SML dialog window specifications in XML format.  A dialog 
specification is a simple text file (or text character string embedded in the SML script) that conforms to the basic 
format and syntax rules of the Extensible Markup Language (XML).  The XML text consists of a set of predefined 
XML tags and attributes (described in this document) in a nested, hierarchical structure that mirrors the grouping of 
components in the dialog window.  In comparison to the previously-available X-Motif class structures in SML for 
custom dialogs, XML specifications provide a simpler, more highly-structured approach to constructing custom 
SML dialogs, as well as streamlined methods for accessing information input via the dialog.  Custom dialog 
windows created using an XML specification can be used in either SML for X or SML for Windows.  Dialogs 
created using the X-Motif classes can be used only in SML for X.    

About XML 
XML is a markup meta-language that is designed to allow the creation of structured, self-describing text.  XML 
makes use of tags (enclosed between  <  and  >  characters) to delimit and identify pieces (elements) of text data.  In 
an SML dialog specification, the data elements identified by the tags correspond to specific components of a dialog 
window, such as buttons and labels.  Delimiting tags occur as a pair, a start tag and end tag, that enclose the relevant 
text.  The start and end tag use the same tag name, but in the end tag the name is preceded by the forward slash “/” 
character.  For example, here is the entry for a text label in an SML dialog specification in XML: 
 
 <label>Select Composite Type:</label> 
 
In this case the <label> tags bracket the text to be used for the label on the dialog.    
 
Data elements in XML can be nested inside other data elements to indicate membership in a group.  There may be 
multiple levels of membership, forming a hierarchical or tree-like data model.  This model is well suited to describe 
a dialog window, because many dialog elements, such as panes, list boxes, and menu buttons, act as “containers” 
that have other elements as their “contents”.  (Another way of stating this is that the container element is the 
“parent” and the contained elements are the “children”).  In a dialog specification in XML the contained elements 
are nested inside the tag pair for the container element.  For example, the excerpt below shows the specification for a 
layout pane that includes two text labels sandwiched around a numeric entry control: 
 
 <pane Orientation="horizontal"> 
  <label>Buffer Distance:</label> 
  <editnumber id="buffdist" Width="4" Precision="0" Default="100" MinVal="0"/> 
  <label>meters</label> 
 </pane> 
 
For ease of editing and reading the dialog specification, the start and end tags for a parent element should be placed 
on separate lines in the text, with the contained elements identified on the intervening lines.  You should also indent 
lines corresponding to child elements by an equal amount relative to their parent element tags. 
 
Start tags can also include attributes.  A specific, predefined set of attributes are available for each type of dialog 
element in an SML dialog specification.  You use these attributes to define the individual characteristics and settings 
for each dialog element, to provide a control handle for the SML script to use to access the control, and to specify a 
callback procedure associated with a control (if needed).  To use an attribute within an element tag, you list the 
attribute name and assign it a value (in double quotation marks) using an equals sign ( = ).  In the specification 
excerpt immediately above, the layout pane has an attribute called Orientation that has been assigned the value 
horizontal.  Attribute names and predefined nonnumeric values are case-sensitive. 
 
Some dialog elements can be completely specified using the tag name and a list of start-tag attributes.  There is no 
other “text” associated with the element to be bracketed by separate start and end tags.  In this case the two tags are 
combined into a so-called empty tag.  In an empty tag the forward slash character ( / ) normally used to begin an end 
tag is placed just before the final character ( > ) of the tag.  The editnumber tag in the specification excerpt 
immediately above is an example of an empty tag.    

 © 2003 - 2007  MicroImages, Inc.      www.microimages.com 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

In order for SML to correctly parse and interpret a document specification, the specification must follow some 
simple syntax rules that define a well-formed XML document:  
 1) An element containing text or other elements must have both start and end tags. 
 2) An empty element tag must have a forward slash ( / ) before the ending bracket  
 3) All attribute values must be in quotes. 
 4) Elements may not overlap. 
 
In general uses of XML, the meanings of tags and attributes are specified in a document type definition (DTD), 
which can be either contained in the XML file or referenced by it, or alternatively in an external XML Schema.  
However, the XML text describing an SML dialog does not need to reference a DTD or Schema, because the tag 
and attribute meanings are processed by the SML parser. 
 
To conform to XML standards, the dialog specification should begin with an XML Declaration containing the 
version of XML: 
 
 <?xml version="1.0"?>. 
 
For further information about XML, please consult the following: 
 
Learning XML, by Erik T. Ray.  O’Reilly & Associates,  Sebastopol, CA, 2001.  354 pages. 
 
Mastering XML, by Ann Navarro, Chuck White, and Linda Burman.  SYBEX, San Francisco, CA, 2000, 882 pages. 
 
XML Handbook, by Charles F. Goldfarb and Paul Prescod.  Prentice-Hall PTR, Upper Saddle River, NJ, 4th Ed., 
2002, 1147 pages. 
 
www.w3.org/XML/: XML web site maintained by the World Wide Web Consortium (W3C), the organization that 
formulates and publishes XML standards.  Includes technical specifications and links to other web resources on 
XML, including tutorials and books. 
 
www.xml.org: Industry web portal on XML maintained by OASIS, the nonprofit Organization for the Advancement 
of Structured Information Systems.  Includes sections on XML basics. 
 
xml.coverpages.org/xml.html: XML section of Cover Pages, maintained by Robin Cover and hosted by OASIS. 
 
www.xml.com: XML site by O'Reilly & Associates. 
 
 

2 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008                         Reference Guide to SML Dialog Specification in XML    

Overview of Tag Set and Classes for SML Dialog Specifications 
A dialog created using an XML dialog specification makes use of a set of Graphical User Interface (GUI) classes in 
SML.  Most of the XML tag types in a dialog specification correspond to specific GUI classes.  In essence, the XML 
specification provides a shorthand way to set up and access the various class structures that underlie a custom dialog 
window.  The following is a list of the available dialog elements with their tag name and corresponding GUI class.  
Each element type is documented fully in subsequent sections of this document. 
 
Tag Description Class

Main Elements 
<root> root element of the document None 
<dialog> dialog window GUI_DLG 
<script> container for an SML script None 
<strings> container for list of text resource strings None 
<string> a single text resource string None 

Layout Elements 
<book> book of tabbed pages GUI_LAYOUT_BOOK 
<page> tabbed page in a book GUI_LAYOUT_PAGE 
<pane> window layout pane GUI_LAYOUT_PANE 
<groupbox> frame around other controls GUI_CTRL_GROUPBOX 

Control Elements 
<label> simple text label GUI_CTRL_LABEL 
<pushbutton> push button with text or icon GUI_CTRL_PUSHBUTTON 
<togglebutton> independent toggle button GUI_CTRL_TOGGLEBUTTON 
<colorbutton> color selection button GUI_CTRL_COLORBUTTON 
<edittext> text entry control GUI_CTRL_EDIT_STRING 
<editnumber> numeric entry control GUI_CTRL_EDIT_NUMBER 
<radiogroup> group of radio (mutually exclusive) buttons GUI_FORM_RADIOGROUP 
<combobox> combobox menu GUI_CTRL_COMBOBOX 
<menubutton> button with drop-down menu GUI_CTRL_MENUBUTTON 
<listbox> scrolled list for selection GUI_CTRL_LISTBOX 
<item> item in a list, menu, combobox, or radiogroup None 
<canvas> drawing canvas in a dialog GUI_CANVAS 
 
 
In addition to the classes listed above, two other SML classes provide methods to interact with dialog specifications 
in XML: 
 
class XMLDOC:  an XML document.  Methods in this class are used to read and parse the XML text. 
 
class XMLNODE:  an element (node) in an XML document.  Methods in this class allow the script to access the 
XML elements that correspond to particular components of the dialog, including the node for the dialog window 
itself. 

  © 2003  MicroImages, Inc.      www.microimages.com 3 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

Callbacks 
All dialog elements that represent actual controls can have callback attributes.  The attribute is named in such a way 
as to indicate the type of action happening, like OnClicked, or OnValueChanged. 
 
The value of a callback attribute is a small fragment of SML code, usually a call to a function or procedure defined 
in the main SML script or in the dialog specification within a <script> element.  If the value used for a callback 
attribute is a call to a function or procedure, include the full procedure name (including parentheses) as the callback 
value in the dialog specification, as for the OnOK attribute in the following example: 
 
 <dialog id="tigerops" title="Extraction options" OnOK="CheckTogs()"> 
 
All callbacks can return a numeric value and return 1 by default.  Some callbacks, like OnOK for dialogs can 
prevent the default action by returning 0 instead.  If the returned value is required for use in the main script, the 
value for the callback should be a statement with the keyword "return" followed by the name of the associated user-
defined function, as in the following example: 
 
 <dialog id="tigerops" title="Extraction options" OnOK="return CheckTogs()">  
 
The SML code within a <script> element can consist of one or more callback procedures for individual dialog 
controls, including the dialog's OK and Cancel buttons.  In some cases the code within the <script> tag could carry 
out most of the intended data processing.  However, a separate SML script is required to read in the dialog 
specification file and open the dialog window described in the specification. 
 
Within the SML code in a <script> element, the following conditions apply: 
 

 Global variables and functions defined in the main SML script are available within the <script> element 
code. 

 The default MDLGPARENT for the SMLCONTEXT is set to the LAYOUT_PANE containing the control 
so that any dialogs popped up while within the callback will automatically appear over the dialog, not 
somewhere else. 

 The variable this is predefined to be the control causing the event.  The variable corresponds to a class 
variable of one of the classes derived from GUI_CTRL.  The control will already reflect the changes made, 
so if the event is a toggle button being toggled, this.GetValue() will return true if the button was 
toggled on and false if it was toggled off.  To use the variable, you need to do two things: (1) the value you 
assign for the callback attribute should include this as a parameter of the procedure or function; (2) in the 
definition of the procedure or function, declare this as an instance of the relevant GUI_CTRL class.  The 
excerpt below illustrates this structure for a listbox control whose OnChangeSelection callback calls a 
procedure called SayHello(). 

 
<root>  
 <dialog id="hello" Title="Bonjour!" 
  ... 
  <listbox id="listbox" SelectStyle="single" Height="3" Default="French"     
   OnChangeSelection="SayHello(this)">  
  ... 
 <\dialog> 
 <script> 
  <![CDATA[  
   proc SayHello (class GUI_CTRL_LISTBOX this) { 
     local string $language; 
     language$ = this.GetSelectedItemID(); 
     ... 
    } 
   ]]> 
 </script> 
</root> 

4 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

Example Dialog Specification in XML 
This dialog specification describes a dialog window with three tabbed panels that include various types of controls. 
 
 
 
 
 
 
 
 
 
 
 
 
<?xml version="1.0"?> 
<root> 
 <dialog id="test" title="This is a test" Orientation="vertical" OnOK="GetDlgValues()"> 
  <book> 
   <page Name="Page1"> 
    <label>This is some text in a label</label>  
    <pushbutton Name="Ignore This" OnPressed="TestFunc2();"/> 
    <combobox id="combo"> 
     <item Value="item1">If it's not one thing</item> 
     <item Value="item2">it's another</item> 
    </combobox> 
    <pane Orientation="horizontal"> 
     <pushbutton Name="Test" Icon="CHECKBOX_BLACK" ToolTip="Check This!"/> 
     <togglebutton id="tbutton" Name="This is a togglebutton"/> 
    </pane> 
   </page> 
   <page Name="Edit"> 
    <pane Orientation="horizontal"> 
     <label WidthGroup="1">First Name:</label> 
     <edittext id="fname" width="20"/> 
    </pane> 
    <pane Orientation="horizontal"> 
     <label WidthGroup="1">Last Name:</label> 
     <edittext id="lname" width="20"/> 
    </pane> 
    <pane Orientation="horizontal"> 
     <label WidthGroup="1">Password:</label> 
     <edittext id="password" Opaque="true" width="20"/> 
    </pane> 
   </page> 
   <page Name="Radiogroup"> 
    <groupbox Name="This is a groupbox"> 
     <radiogroup id="radiogroup"> 
      <item Value="button1" Name="If it's not one thing"/> 
      <item Value="button2" Name="it's another"/> 
     </radiogroup> 
    </groupbox> 
   </page> 
  </book> 
 </dialog> 
 <script language="SML"> 
  <![CDATA[ 
   func TestFunc2() { 
    PopupMessage("I said to ignore this!"); 
    return (0); 
   } 
  ]]> 
 </script> 
</root> 

  © 2003  MicroImages, Inc.      www.microimages.com 5 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

Common Dialog Element Attributes 
This is a list of attributes that are common to many of the dialog elements.  They are documented here to avoid 
redundancy.  In the succeeding documentation of individual elements, the attributes unique to that element are 
documented in full, but the available common attributes are merely listed for each element.   
 
id – All elements can have an id attribute.  The value of an id attribute can be any string, but must be unique within 

a given XML document.  You are not allowed to have two tags with the same id.  This attribute allows you to 
gain access to the dialog elements within SML to retrieve or set their values or state.  You don’t have to 
assign ids to elements that you don’t need to read or change, such as labels and icons. 

Orientation – Either “horizontal” or “vertical”. The default is the opposite of the parent’s orientation or vertical 
for the main form.  All children of the form are laid out from left to right or top to bottom.  To make more 
complex layouts, nest <panes> with alternating orientations. 

HorizAlign – Controls how the control is aligned horizontally in the available space.  Possible values are “Left” 
(the default), “Right” and “Center”. 

VertAlign – Controls how the control is aligned vertically in the available space.  Possible values are “Top” (the 
default), “Bottom” and “Center”. 

HorizResize – Controls how the control behaves when the parent is resized.  Possible values are: 
“Expand” – Expands horizontally to fill the available space. 
“Fixed” – Width stays the same. 
“Relative” – Expands horizontally, keeping the same percentage of space as it had before. 

VertResize – Controls how the control behaves when the parent is resized.  Possible values are: 
“Expand” – Expands vertically to fill the available space. 
“Fixed” – Height stays the same. 
“Relative” – Expands vertically, keeping the same percentage of space as it had before. 

ChildSpacing – Space between children.  The default value is 4. 

ExtraBorder – Extra border around inside of pane, in addition to ChildSpacing.  The default value is 0. 

WidthGroup – If specified, all controls with the same WidthGroup value will be adjusted to be as wide as the 
widest control in the group. 

ResourceLookup – Either “true” or “false”.  If “false”, the string is used as-is.  If “true”, any string shown on the 
dialog for the element (such as a label or dialog name) is replaced with a translated text resource version (if 
found) based on the language locale currently set for the TNT products.  Translated versions of the strings 
used in the dialog must be provided within the dialog specification using <string> elements within one or 
more <strings> sections at the beginning of the dialog specification (one section for each language).  The id 
for each translated string element should be set to the string actually used in the dialog specification.   The 
specification must also include an empty <strings> section identifying the language in which the strings are 
initially set for the elements.  If no translated resource is found, the original string in the dialog specification 
is used as-is.  The default value for this attribute is inherited from the parent, except for <form> and 
<dialog>, which default to “true”. 

Enabled – Either “true” or “false”.  If “true” (the default), the control is enabled.  If “false”, it’s initially disabled 
and grayed out.  The control stays this way unless changed via SML script or C++ code. 

 
NOTE.  Any attribute that has “true” and “false” as valid values also accepts “yes” and “no” or “1” and “0”. 

6 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

Dialog (Form) Elements 

Main Elements 
 
<root> 
 
Description: The required root element of the document.  All elements described subsequently must be contained 
within <root> or one of its children. 
 
Valid inside: nothing 
 
Valid children: <script>, <strings>, <dialog> 
 
Attributes: none 
 
SML Class:  none 
 
<dialog> 
 
Description: A dialog window. 
 
A dialog can be modal or non-modal, but that is up to the SML code that opens the dialog, not the XML 
specification.  A modal dialog is one that takes control and won’t let the program do anything else until the dialog 
closes.  Modal dialogs are automatically provided with “OK” and “Cancel” buttons.  If there is a HelpID attribute in 
the XML specification of the dialog, it will also have a “Help” button.  Non-modal dialogs permit program 
operations and user interactions to continue while they’re open.  In this case, an “Apply” button is provided along 
with the “OK” and “Cancel” buttons. 
 
Valid inside:  <root> 
 
Valid children: Any layout element except <page>; any control element except <item> 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing, 
ExtraBorder, ResourceLookup, Orientation 

OnApply – SML Code to execute when user presses the “Apply” button. 
OnOK – SML code to execute when user presses the “OK” button.  After your OnOK callback is called, the 

dialog will be closed.  You can prevent it from closing by having your callback return 0. 
OnCancel – SML code to execute when the user presses the “Cancel” button. After your OnCancel 

callback is called, the dialog will be closed.  You can prevent it from closing by having your 
callback return 0. 

OnOpen – SML code to execute when the dialog opens.  
OnClose – SML code to execute when the dialog closes.  After your OnClose callback is called, the 

dialog will be closed.  You can prevent it from closing by having your callback return 0. 
OnCloseRequest – SML Code to execute when the dialog receives a request to close.  A return value of 

0 prevents the dialog from closing. 
Title – The title of the dialog.   
HelpID – A key into tnthelp.txt.  If set, the dialog gets a “help” button that opens a help window.  
Buttons – The buttons to create.  Use to specify which of the default buttons are provided.  If the value is 

an empty string (“”), none of the default buttons are provided. 
 

SML Class:  GUI_DLG 

  © 2003  MicroImages, Inc.      www.microimages.com 7 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
<script> 
 
Description: Container for an SML script.  An SML script can be enclosed in an XML wrapper.  If the file has a 
.sml extension but an XML header, the SML parser will look for a script tag and run that.  The rest of the XML 
document will be parsed and accessible to the script.   
 
Note that the contents of the script tag must start with <![CDATA[ and end with ]]>.  Without this, you would 
have to escape every ampersand (&), greater-than (>), less-than (<) and both single and double quotes.   
 
Valid inside: <root> 
 
Valid children: Only a CDATA containing SML code 
 
Attributes: 

id – Unique identifier for the script (not usually necessary) 
language – TNTmips only recognizes “SML”, which is the default.  Include this attribute to ensure that 

other XML viewers don’t try to interpret the CDATA as some other language such as Javascript. 
Usage – One of the following values specifying the type of script: 

“standalone” 
“style-point”, “style-line”, “style-poly” 
“select-point”, “select-line”, “select-poly” 
“geoformula”, “macroscript”, “toolscript” 

StrictSyntax – either “true” or “false”.  If “true” (the default) the parser enforces stricter syntax rules 
(requires semicolons at the end of lines, predeclared variables, etc.).  

 
SML Class:  none 
 
<strings> 
 
Description: Container for string elements that provide dialog text resources for a particular language. 
 
Valid inside: <root> 
 
Valid children: <string> 
 
Attributes: 

id – Unique identifier for the string section (not usually necessary) 
language – The three-letter abbreviation of the language locale.  Possible values are: 

“are”– Arabic “fin” – Finnish “plk” – Polish 
“bah”– Indonesian “frc” – French “ptg” – Portugese 
“ben”– Bengali “hrv” – Croatian “rom” – Romanian 
“bgr” – Bulgarian “hun” – Hungarian “rus” – Russian 
“bos” – Bosnian “ita” – Italian “shc” – Serbian 
“chs” – Chinese “jpn” – Japanese “sky” – Slovakian 
“deu” – German “kor” – Korean “tgl” – Tagalog 
“ell” – Greek “mys” – Malaysian “tha” – Thai 
“enu” – English “nld” – Dutch “trk” – Turkish 
“esn” – Spanish “nor” – Norwegian “urd” – Urdu 

  
SML Class:  none 
 
 
 
 
  
<string> 
 

8 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

Description: A string that specifies a dialog text resource for a particular language. 
 
Valid inside: <strings> 
 
Valid children: text 
 
Attributes: 
   id – Unique identifier for the string (same as text in the specification for the element that uses the   
     resource). 
 
SML Class:  none 
 
 

Layout Elements 
 
<pane> 
 
Description: A layout pane 
 
Valid inside: <dialog>, <page>, <pane>, <groupbox> 
 
Valid children: Any layout element except <page>; any control element except <item> 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing, 
ExtraBorder, ResourceLookup  

Orientation – Either “horizontal” or “vertical” (default is the opposite of the parent pane).  All children 
of the form will be laid out from left to right or top to bottom.  For more complex layouts, nest 
<pane>s with alternating orientations. 

 
SML Class:  GUI_LAYOUT_PANE 
 
 
<page> 
 
Description: A tabbed page in a <book> 
 
Valid inside: <book> 
 
Valid children:  Any layout element except <page>; any control element except <item>  
 
Attributes:  
 id, Orientation, ResourceLookup 
 Name – the label on the page’s tab 
 OnSetActive – SML code to execute when the page is activated 
 
SML Class:  GUI_LAYOUT_PAGE 
 

  © 2003  MicroImages, Inc.      www.microimages.com 9 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
<book> 
 
Description:  book of tabbed pages 
 
Valid inside:  <dialog>, <page>, <pane>, <groupbox> 
 
Valid children: <page> 
 
Attributes:   

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing, 
ExtraBorder, ResourceLookup 

 
SML Class:  GUI_LAYOUT_BOOK 

 
 
<groupbox> 
 
Description:  A frame around other controls 
 
Valid inside:  <dialog>, <page>, <pane>, <groupbox> 
 
Valid children: Any layout element except <page>; any control element except <item> 
 
Attributes:  

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing, 
ExtraBorder, Orientation, ResourceLookup, Enabled 

  Name – the label on the upper left edge of the box (optional) 
 
SML Class:  GUI_CTRL_GROUPBOX 
 

Control Elements 
 
<label> 
 
Description: A simple text label 
 
Valid inside: any layout element except <book> 
 
Valid children: text 
 
Attributes:  

id, HorizAlign, VertAlign, HorizResize, VertResize, ResourceLookup, 
WidthGroup, Enabled 

TextAlign – How to align the text of the label.  Possible options are: 
 “LeftNoWrap” – Left justify without word wrapping 
 “Left” – Left justify, MFC may word-wrap if too long, but X won’t 
 “Center” – Center, MFC may word-wrap if too long, but X won’t 

“Right” – Right justify,  MFC may word-wrap if too long, but X won’t 
 

SML Class:  GUI_CTRL_LABEL 
 

10 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

 
<pushbutton> 
 
Description: A push button with either text or icon. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Name – the text to be placed on the button. 
Icon – Icon to display based on ICONID values. For example, to use ICONID_CREATE_FILE, use the 

string “CREATE_FILE”.   Possible values are those listed for the “iconid” parameter of the 
CreateIcon() method of class GUI_CTRL_BUSHBUTTON.  

ToolTip – ToolTip text to display for the button (only if it has an icon) 
OnPressed – SML code to execute to call when the button is pressed.  See section on callbacks for 

details. 
 

SML Class:  GUI_CTRL_PUSHBUTTON 
 
 
<togglebutton> 
 
Description: A toggle button. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Name – the label to be placed next to the button 
Icon – Icon to display.  Based on ICONID values. For example, to use ICONID_CREATE_FILE, use 

the string “CREATE_FILE”.  You can get a full list of valid Icon IDs by looking at the 
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML. 

ToolTip – tooltip text to display for the button (only if it has an icon) 
Type – “check” or “radio”.  Radio buttons are round. A check box is square.  The default is “check”.  Note 

that radio behavior is not automatic.  If you want automatic radio behavior, create a 
<radiogroup> with an <item> for each radio button.   

Selected – Either “true” or “false”.  If true, the button is initially selected.  This can be overridden 
through commands in the SML script. 

OnChanged – SML code to execute when the button’s state changes (when the user toggles the button 
on or off).  For radio buttons, an OnChanged callback is also triggered for the button that is being 
toggled off.  See section on callbacks for details. 

  
Note: to create mutually exclusive radio buttons, create a <radiogroup> with <item>s instead of 
<togglebutton>s 
 
SML Class:  GUI_CTRL_TOGGLEBUTTON 
 
 

 
<colorbutton> 
 
Description: A color selection button. 

  © 2003  MicroImages, Inc.      www.microimages.com 11 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
The button has no text, but the body of the button will show the selected color.  Pushing the button pops up a color 
selection dialog. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, Enabled 
ReadOnly – Either “true” or “false”.  If true, the button shows a color but the user cannot change it.  The 

default is “false” 
AllowTransparent – Either “true” or “false”.  If true, the color selection dialog will allow 

transparency settings. The default is “false”. 
OnChangeColor – SML code to execute to call when color is changed.  See section on callbacks for 

details. 
 

SML Class:  GUI_CTRL_COLORBUTTON 
  
 
<edittext> 
 
Description:  A text entry control. 
 
The control has no built-in text label. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

OnChanged – SML code to execute when the value is edited. 
Width – Width of the text control in “typical” characters. 
MaxLength – Maximum length of text to allow. 
Justify – Text alignment.  Either “left” or “right”.  The default is “left”. 
OnActivate – SML code to execute when the user presses <Enter> with the cursor in the edit control. 
ReadOnly – Either “true” or “false”.  If “true”, the user cannot change the value, but the control does not 

look disabled.  The default is “false”.   
Opaque – Either “true” or “false”.  If “true”, the control shows “*” for password input.  Default is “false”. 

 
SML Class:  GUI_CTRL_EDIT_STRING 

 

12 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

 
<editnumber> 
 
Description:  A numeric entry control. 
 
The control has no built-in text label. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

OnChanged – SML code to execute when the value is edited. 
Width – Width of the text control in “typical” characters. 
MaxLength – Maximum length of text to allow. 
Justify – Text justification.  Either “left” or “right”.  The default is “right”. 
OnActivate – SML code to execute when the user presses <Enter> in the edit control. 
ReadOnly – Either “true” or “false”.  If “true”, the user cannot change the value, but the control does not 

look disabled.  The default is “false” 
Default – The default value (optional) 
MinVal – Minimum allowed value.  Default is no minimum. 
MaxVal – Maximum allowed value.  Default is no maximum. 
AddOne – Either “true” or “false”.  If “true”, the value shown in the control is always one more than the 

actual data value.  Default is “false”. 
BlankZero – Either “true” or “false”.  If “true”, blank the field if the value is 0.0.  The default is “false”.  

Note, the IEEE NaN value will always cause the control to show blank. 
Format – One of the following: 
 “Decimal” – Normal decimal format (default) 

“Exponential” – Show in scientific notation. 
 “Latitude” – A latitude value.  Actual prompt value is decimal degrees. 
 “Longitude” – A longitude value.  Actual prompt value is decimal degrees. 
 “DegMinSec” – An angle in Degrees, Minutes and Seconds.  Actual prompt value is decimal 

degrees. 
Precision – Number of digits after the decimal place (Default is 6) 
 

SML Class:  GUI_CTRL_EDIT_NUMBER 
 

 
<item> 
 
Description:  An item in a listbox, combobox, menubutton, or radio group. 
 
Valid inside: <combobox>, <listbox>, <menubutton>, <radiogroup> 
 
Valid children: text 
 
Attributes: 

ResourceLookup 
Name – The button label for a radiogroup button or the item's menu entry for the other parent controls. 
Value – The value of this item.  This is the value that is returned when calling GetValue() on the parent 

object if this item is selected.  If omitted, the default value is the item’s index, starting at 1. 

  © 2003  MicroImages, Inc.      www.microimages.com 13 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

Selected – Either “true” or “false”.  If true, the item is selected by default.  This overrides the 
Default attribute of the parent.  Default is false.  If more than one item is marked as selected, 
the last one marked is the one selected unless the parent is a multi-select list. 

Icon – An icon ID (only valid if the <item> is inside a <radiogroup>). 
 

SML Class:  none 
 
 
<radiogroup> 
 
Description:  A group of radio buttons (mutually exclusive). 
 
Valid inside: any layout element except <book> 
 
Valid children: <item> 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
Orientation, ResourceLookup, Enabled 

Default – The Value of the button that is to be on by default.  This can be overridden by setting the 
Selected attribute of one of the items in the group 

OnSelection – SML code to execute when the selected button changes.   
 

SML Class:  GUI_FORM_RADIOGROUP 
 
 
<combobox> 
 
Description:  A combo-box. 
 
Valid inside: any layout element except <book> 
 
Valid children: <item> 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Default – The Value of the item that is to be selected by default.  This can be overridden by setting 
the Selected attribute of one of the items in the combobox. 

OnSelection – SML code to execute when the selected item changes. 
Width – Width of the control in “typical” characters.  The default is to base the width on the width of the 

widest item in the list. 
Height – The maximum number of items to show when the list is opened.  Default is 7.  If there are more 

items than that, the list has a scrollbar. 
Sort – Either “true” or “false”.  If “true”, then the values are sorted.  The default is false.   
 

SML Class:  GUI_CTRL_COMBOBOX 
 

14 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

 
<listbox> 
 
Description:  A simple scrolled list from which the user can view and select items. 
 
Valid inside: any layout element except <book> 
 
Valid children: <item> 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Default – The Value of the item that is to be selected by default.  This can be overridden by setting 
the Selected attribute of one of the items in the combobox. 

OnChangeSelection – SML code to execute when the selected item changes. 
OnDoubleClick – SML code to execute when the user double-clicks on a listitem. 
Width – Width of the control in “typical” characters.  The default is to base the width on the width of the 

widest item in the list. 
Height – Height of the list in lines (default is 5). 
Sort – Either “true” or “false”.  If “true”, then the values are sorted.  The default is false.   
SelectStyle – One of the following: 

“single” – (the default) allows one item to be selected. 
 “multi” – Multiple items selectable by simple toggle of each item 
 “extended” – Multiple items selected by SHIFT/CTRL key and mouse 
 

SML Class:  GUI_CTRL_LISTBOX 
 
 
<menubutton> 
 
Description:  A pushbutton (text or icon) with a drop-down menu. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Name – the text to be placed on the button 
Icon – Icon to display.  Based on ICONID values. For example, to use ICONID_CREATE_FILE, use 

the string “CREATE_FILE”.  You can get a full list of valid Icon IDs by looking at the 
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML. 

ToolTip – tooltip text to display for the button (only if it has an icon) 
OnSelection – SML code to execute when a menu item is selected. 
OnMenuPopup – SML code to execute just before the menu is shown.   
 

SML Class:  GUI_CTRL_MENUBUTTON 
 

  © 2003  MicroImages, Inc.      www.microimages.com 15 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
<canvas> 
 
Description:  A drawing canvas. 
 
Valid inside: any layout element except <book> 
 
Valid children: none 
 
Attributes: 

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, 
ResourceLookup, Enabled 

Height – The height of the drawing area in screen pixels. 
Width – The width of the drawing are in screen pixels 
OnLeftDown – SML code to execute when the left mouse button is pressed. 
OnLeftUp – SML code to execute when the left mouse button is released.   
OnRightDown – SML code to execute when the right mouse button is pressed. 
OnRightUp – SML code to execute when the right mouse button is released.  
OnMouseMove – SML code to execute when the mouse cursor is moved. 
OnPaint – SML code to execute when the canvas needs to be drawn.  
OnSize – SML code to execute when the canvas size changes.    
 

SML Class:  GUI_CANVAS 
 

16 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

Using an XML Dialog Specification with an SML Script 
To use a dialog specification in XML in conjunction with an SML script, the script must first declare an instance of 
the class XMLDOC.    Methods within this class are then used to ingest and parse the XML text, creating the 
necessary structures in memory for use throughout the remainder of the SML script.    
 
The XML dialog specification used with a particular SML script can be either embedded in the script or in a 
separate file.  Different methods in class XMLDOC are used to ingest the XML text in these two cases.  If you want 
to incorporate the dialog specification directly within the SML script, you assign the XML-formatted text containing 
the specification to a string variable.   In most cases this specification will span multiple lines of text.  You can 
include multiple text lines in an assignment statement by enclosing the text in single quotation marks, as in the 
following example: 
 
xml$ = '<?xml version="1.0"?> 
<root> 
 <strings language="enu"/>  <!-- English --> 
 <strings language="frc">     <!-- French translations --> 
  <string id="Sample">Échantillon</string> 
  <string id="Hello">Bonjour</string> 
 </strings> 
 <strings language="esn">     <!-- Spanish translations --> 
  <string id="Sample">Muestra</string> 
  <string id="Hello">Hola</string> 
 </strings> 
 <dialog id="hello" title="Sample" ResourceLookup="true" OnOK="OnOK()"> 
  <label>Hello</label> 
 </dialog> 
</root>'; 
 
class XMLDOC doc; 
doc.Parse(xml$); 
 
As the above example shows, when the XML text has been assigned to a text string, the XMLDOC class method 
Parse(xml$) is used to parse the XML text. 
 
If you prefer to compose the XML text in an external editor and keep it as a separate .xml file, you use the 
XMLDOC class method Read(filename$) to read the external file and automatically parse its contents.  The 
filename passed to this method must include the full directory path to the file as well as its filename and extension.  
If you keep the SML script and the XML file in the same directory, you can simplify the task of specifying the path 
(and make the script more readily portable) by using the CONTEXT class structure.  When a script is run, an 
instance of this class called _context is created automatically.  The class member _context.ScriptDir finds 
the path to the directory the script is in and can be used as a substitute for this path in string expressions, as in the 
following example that refers to a dialog specification file “text.xml” in the same directory as the SML script.  A 
string expression is used to concatenate the script’s directory path with the name of the target file:     
 
class XMLDOC doc; 
xmlfile$ = _context.ScriptDir + "/test.xml"; 
doc.Read(xmlfile$); 
 
 
Both the Parse(xml$) and Read(xmlfile$) class methods also check the XML syntax of the dialog 
specification and return an error code (a negative integer) if syntax errors are found.  You can write the script to 
check the returned value and pop up an error message dialog if needed, as shown below:

  © 2003  MicroImages, Inc.      www.microimages.com 17 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
numeric err; 
class XMLDOC doc; 
xmlfile$ = _context.ScriptDir + "/test.xml"; 
 
err = doc.Read(xmlfile$); 
 
if (err < 0) { 
 PopupError(err); 
 Exit(); 
 } 
 
Pressing the Details... button on the error message dialog opens another window listing the syntax errors.  Note that 
a single error (such as missing closing quotes on an attribute value or a missing end tag) may trigger a number of 
listings in this window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Opening the Dialog 
Opening the dialog specified by the XML text requires several steps: 
 
1) Use the XMLDOC class method GetElementByID() to get the dialog element from the parsed XML and assign 
it to an instance of class XMLNODE, the class used to represent elements in a parsed XML structure. 
 
2) Set that XMLNODE instance as the source for an instance of class GUI_DLG, the SML class that actually 
represents the dialog window. 
 
3) Use a GUI_DLG class method to open the dialog window as either a modal or nonmodal dialog.  A modal dialog 
takes control and won’t let the SML program do anything else until the dialog closes.  Modal dialogs are 
automatically provided with “OK” and “Cancel” buttons.  Nonmodal dialogs allow other program operations and 
user interactions to continue while they are open.  They are automatically provided with “OK”, “Apply”, and 
“Cancel” buttons.  
 

18 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

The script excerpt below carries out these steps for a modal dialog: 
 
class XMLNODE dlgnode; 
dlgnode = doc.GetElementByID("hello");  # “hello” is the value assigned to the id attribute 
                       # for the dialog element in the 
XML text 
if (dlgnode == 0) {    # pop up an error message if dialog node can’t be found, then exit 
 PopupMessage("Could not find dialog node in XML document"); 
 Exit(); 
} 
 
class GUI_DLG dlg; 
dlg.SetXMLNode(dlgnode); # set this XML node as the source for the dialog window  
numeric ret; 
ret = dlg.DoModal();    # open the window as a modal dialog    
 
When the DoModal() class method is called in the script, the method remains active until the user closes the modal 
dialog.  The method then returns the value -1 if the user pressed the Cancel button or 0 if the user pressed the OK 
button.  The script can assign the returned value to a numeric variable (the variable ret in the above example), then 
check this value to determine succeeding actions.  This strategy provides an easier alternative to writing explicit 
OnCancel() and OnOK() callback procedures.   Control/settings dialogs in standalone scripts are best set up as 
modal dialogs; all user-input can be recorded using the modal dialog, then the remainder of the script can read these 
settings and process the data accordingly.   
 
Modeless dialogs are required in event-driven scripts such as tool scripts and display control scripts that provide 
script interaction with geospatial data displayed in TNTmips Display process or in TNTatlas.  These scripts consist 
of a series of procedures or functions, each driven by an event such as a mouse-button press.  To create and open a 
dialog as a nonmodal dialog, you would use the GUI_DLG class method CreateModeless()to create the dialog in 
memory and Open()to open the dialog.  The dialog might be created in one event-driven procedure (such as when 
a tool script’s tool is initialized by opening the group or layout) and opened in another (such as each time the tool is 
activated).  

Reading Dialog Control Values 
Once the dialog has been opened and the user has set its controls, the script needs to get the control settings to 
continue with further processing.  Each control in a dialog has a “value” that is either a number or a string.   For 
editnumber and edittext controls, the value is simply the number or string (respectively) entered by the user.  
For a togglebutton, the value can be retrieved as either a number or a string; it is 1 or "yes" if set and 0 or "no" if 
not set.  For controls that involve selection of an item (combobox, listbox, menubutton, and radiogroup), the 
value of the control is the value of the selected item.  The value of each item is set by the Value attribute you 
assigned to that item in the dialog specification.  You can use any character string for the item attribute, but 
obviously each item in a particular control should have a unique value.  If you use only numerals in the attribute 
string, you can read the value as either a number or a string.  If you omit Value attributes for the items, the default 
value is the numeric index (position) in the list, beginning with 1. 
 
For modal dialogs, dialog settings should be retrieved before the dialog closes and the controls are destroyed.   
Settings can be retrieved within callback procedures for individual controls or within the OnOK callback procedure 
for the dialog window.  There are several methods that can be used to get control settings.   The simplest and most 
direct way to get the control settings is to use the GUI_DLG class method GetValues() to read the values of all of 
the controls at once.  These values are returned as an instance of the class GUIFORMDATA.  You can then use 
GUIFORMDATA class methods GetValueNum(ctrl_id$) or GetValueStr(ctrl_id$), where ctrl_id$ is 
the id attribute you assigned for the control, to read each control value out of this structure as needed. 
 
An alternate method is to use the GUI_DLG class methods GetCtrlValueNum(ctrl_id$) and 
GetCtrlValueStr(ctrl_id$) to retrieve the value of any control individually from the dialog.  This method is 
less efficient than the previous one if you need to retrieve values for several controls.  Internally each of these 

  © 2003  MicroImages, Inc.      www.microimages.com 19 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

functions calls the GetValues() class method to read all the control values, but returns only the requested value 
and discards the rest. 
 
A third method uses the GetCtrlByID() class method in GUI_DLG to get the control handle for a dialog control, 
then a GetValueNum() or GetValueStr() method in the individual GUI_CTRL_... class to read the value. 

Setting Dialog Control Values 
For most dialog windows, you can set the default condition for each control (such as default value for an 
editnumber field, default state for a togglebutton, and default selection for a combobox) in the dialog 
specification in XML using the attribute provided for each control.  However, you can also use statements in the 
main SML script (or in callbacks for other controls in the dialog) to set a control.  For example, in a dialog that 
requires the selection of several input objects, you might want the dialog to show the name of the object after each 
has been selected.  You can use an edittext control (set to be read-only) next to the selection button for this 
purpose.  The callback for the selection button can construct a text string from the file name and object name of the 
selected object and set this as the value for the edittext control.  Class methods in the GUI_DLG class 
(SetCtrlValueNum(ctrl_id$) and SetCtrlValueStr(ctrl_id$) ) provide the simplest means to set control 
values.  There are also methods in the GUI_CTRL_... class for the individual control type that can be used to set the 
control value or to set which item is selected by default in a group control. 

Sample Script: Read and Set Control Values 
The sample script below (xmldlg.sml) opens the dialog created by the specification on page 5 of this document 
(from a file named test.xml).  After the user sets the controls on the dialog and presses the OK button, the script 
reads the values from the dialog using each of the methods outlined above and prints the values to the SML Console 
Window.  It also sets default values for several of the controls before the dialog is opened.  You can download the 
script and dialog specification from www.microimages.com/downloads/xmlscripts.htm.    
 
numeric err, ret;     # variable declarations 
string xmlfile$; 
class GUI_DLG dlg; 
 
func TestFunc() {     # define test callback function 
 PopupMessage("I Said Ignore it!"); 
 } 
 
proc GetDlgValues() { 
 
 # Here are four ways to get settings out of the dialog.  The extracted values are printed 
 # to the console window as an example. 
 
 #  1 -- Use the GetValues() class method in GUI_DLG to get all of the control settings at 
 #   at once.  They are returned to a previously-declared instance of class GUI_FORMDATA. 
 #   Use GetValue...() methods in that class to read the values as needed. 
 printf("Method 1...\n"); 
 class GUI_FORMDATA data;

20 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

 data = dlg.GetValues(); 
 printf("  RadioGroup value = %s\n", data.GetValueStr("radiogroup") ); 
 printf("  FirstName: %s\n", data.GetValueStr("fname") ); 
 printf("  Togglebutton numeric value = %d\n", data.GetValueNum("tbutton") ); 
 printf("  Togglebutton string value = %s\n\n", data.GetValueStr("tbutton") ); 
 
 #  2 -- Use GetCtrlValueNum() and GetCtrlValueStr() class methods in GUI_DLG to ask the    
 #   dialog for each control value individually as needed.  No GUI_FORMDATA class     
 #   instance is required.  Less efficient than #1 if multiple control values are   
 #   needed.  Internally it calls dlg.GetValues(), pulls out the one value asked for,  
 #   and discards the rest. 
 printf("Method2...\n"); 
 printf("  RadioGroup value = %s\n", dlg.GetCtrlValueStr("radiogroup") ); 
 printf("  FirstName: %s\n", dlg.GetCtrlValueStr("fname") ); 
 printf("  Togglebutton numeric value = %d\n", dlg.GetCtrlValueNum("tbutton") ); 
 printf("  Togglebutton string value = %s\n\n", dlg.GetCtrlValueStr("tbutton") ); 
  
 # 3 -- Use the GetCtrlByID() method in GUI_DLG to get the control handle for a control class, 
 #   then a GetValue...() method in the individual GUI_CTRL_... class to read the control  
 #   value individually as needed. 
 printf("Method3...\n"); 
 class GUI_CTRL_EDIT_STRING fname; 
 class GUI_FORM_RADIOGROUP radio; 
 class GUI_CTRL_TOGGLEBUTTON tbutton; 
 fname = dlg.GetCtrlByID("fname"); 
 radio = dlg.GetCtrlByID("radiogroup"); 
 tbutton = dlg.GetCtrlByID("tbutton"); 
 printf("  RadioGroup value = %s\n", radio.GetSelected() ); 
 printf("  FirstName: %s\n", fname.GetValue() ); 
 printf("  Togglebutton numeric value = %d\n", tbutton.GetValueNum() ); 
 printf("  Togglebutton string value = %s\n\n", tbutton.GetValueStr() ); 
 
 # 4 -- A more compact (but perhaps less clear) version of method 3.  Methods to get the control 
 #   handle and its value are strung together, eliminating the need to declare the control handle 
 #   class variable. 
 printf("Method 4...\n"); 
 printf("  RadioGroup value = %s\n", dlg.GetCtrlByID("radiogroup").GetValueStr() ); 
 printf("  FirstName: %s\n", dlg.GetCtrlByID("fname").GetValueStr() );  
 printf("  Togglebutton numeric value = %d\n", 
 dlg.GetCtrlByID("tbutton").GetValueNum() ); 
 printf("  Togglebutton string value = %s\n\n", 
 dlg.GetCtrlByID("tbutton").GetValueStr() ); 
  
 # NOTE: if the control value must be accessed in several places, store it as a variable for 
 # reuse.  Values read from GUIFORMDATA or the dialog would be stored as numeric or string 
 # variables. 
 
 } # end GetDlgValues() 
 
 
  
##### Main script ##### 
 
clear();    # clear the console window 
 
class XMLDOC doc; 
xmlfile$ = _context.ScriptDir + "/test.xml"; 
err = doc.Read(xmlfile$);   # read and parse the dialog specification

  © 2003  MicroImages, Inc.      www.microimages.com 21 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

if (err < 0) { 
 PopupError(err);  # Popup an error dialog.  "Details" button will say what's wrong. 
 Exit(); 
 } 
 
class XMLNODE dlgnode;dlgnode = doc.GetElementByID("test");  # get the dialog element from 
the                                # 
parsed XML 
if (dlgnode == 0) { 
 PopupMessage("Could not find dialog node in XML document"); 
 Exit(); 
 } 
      
dlg.SetXMLNode(dlgnode); # set the XML dialog element as the source for dialog class  
dlg.SetCtrlValueStr("fname", "Fred");  # set value for edittext control "fname" 
dlg.SetCtrlValueStr("radiogroup", "button2");  # set value for radiogroup control 
 
ret = dlg.DoModal();   # open as modal dialog 
# Note: ret will be -1 if user hit cancel, 0 for OK 
 
printf("DoModal() returned %d\n", ret); 
 

Dynamic Customization of Dialogs 
In a script that launches a complex processing sequence, it may not be possible to bring all the required controls 
together into one dialog window.  In such cases, a push button on the main dialog window can be set up to open an 
auxiliary dialog window that is also specified in XML.  One example is provided by the sample script deveg68.sml.  
This script is designed to process a multispectral image to suppress the expression of vegetation.  The script and a 
color plate describing it are available from www.microimages.com/downloads/xmlscripts.htm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The illustration above left shows the main dialog window created by the devegetation script.   A numeric Dark Pixel 
value is required for each multispectral image band to be processed.  To enter these values, the user presses the Set 
dark pixel values... pushbutton on the main dialog window; the callback procedure for this button creates and opens 
the auxiliary Set Dark Pixel Values window (above right).  This window shows a list of the bands to be processed;  

22 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 



TNT Products 2008:74, September 2008  Reference Guide to SML Dialog Specification in XML    

each entry consists of a label element (with the file name and object name) and an editnumber control, both of 
which are contained in a layout pane with horizontal orientation.   
 
Note that the file and object names required for the Set Dark Pixel Values dialog are not known in advance, and 
even the number of bands to be processed is not fixed.  Therefore only a skeletal representation of this dialog can be 
provided by the embedded XML specification in the callback.  This static specification sets up the dialog itself, the 
label at the top, the groupbox, and a blank layout pane within the groupbox.  After the static specification is  
parsed into memory, the remaining elements of the dialog specification must be added dynamically to the XML 
structure in memory, using information from the input objects the user has selected, before the dialog is opened. 
 
Methods in the class XMLNODE are used to modify the XML dialog structure in memory.  You can add a new 
"child" element to any existing element and set their attribute values.  Any element of the static XML specification 
that needs to be modified later should have an id attribute so the element can be accessed.  In this case the blank 
layout pane inside the groupbox is assigned the id "dplist".  To add each entry in the required list, a horizontal 
pane is added as a child element to dplist.  The new pane for the current entry then is used as the parent for a child 
label element and a child editnumber element, with attribute values derived from the corresponding input object.    
 
The script excerpt below shows the first portion of the callback procedure, which includes the static XML 
specification for the Set Dark Pixel Values dialog and the code that adds the first band entry to the window.  The 
other band entries are handled in a similar manner. 
 
proc SetDP () { 
 
 ### Create string variable with XML specification of dialog 
 ### to enter dark-pixel-correction values 
 xmldp$ = '<?xml version="1.0"?> 
 <root> 
  <dialog id = "dpdlg" title = "Set Dark Pixel Values" OnOK = "dpOK()" > 
   <label>Set Dark Pixel (Path Radiance)</label> 
   <label>Correction Values:</label> 
   <groupbox ExtraBorder = "3"> 
    <pane id = "dplist" Orientation = "Vertical"/> 
   </groupbox> 
  </dialog> 
 </root>'; 
 
 ### Parse XML text for dialog into memory; return error if there are syntax errors. 
 err = docdp.Parse(xmldp$); 
 
 if ( err < 0 ) { 
  PopupError( err ); # pop up an error dialog 
  Exit( ); 
  } 
 
 ############################# 
 ### Modify the XML structure in 
 ### memory before opening the dialog 
 ############################## 
 
 ### Get the id for the parent pane that will contain the list of bands and the  
 ### numeric fields for the correction values 
 class XMLNODE dplist; 
 dplist = docdp.GetElementByID( "dplist" ); 

  © 2003  MicroImages, Inc.      www.microimages.com 23 



Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008 

 
 ######################## 
 ### Add horizontal pane for the first row of dialog elements  
 ### (label and numeric field for NIR band) 
 ######################## 
 class XMLNODE paneNIR; 
 paneNIR = dplist.NewChild( "pane" ); 
 paneNIR.SetAttribute( "Orientation", "Horizontal"); 
 
 
 # Add label with name of NIR band to the NIR pane 
 class XMLNODE labelNIR; 
 labelNIR = paneNIR.NewChild( "label" ); 
 nirprtext$ = sprintf("%s.%s \\ %s", FileNameGetName(nirfile$), 
          FileNameGetExt(nirfile$), nirobjname$); 
 labelNIR.SetText(nirprtext$); 
 
 # Add editnumber field to the NIR pane and set its attributes  
 class XMLNODE prEditNIR; 
 prEditNIR = paneNIR.NewChild( "editnumber" ); 
 prEditNIR.SetAttribute( "id", "prEditNIR" ); 
 prEditNIR.SetAttribute( "Width", "5" ); 
 prEditNIR.SetAttribute( "MinVal", "0" ); 
 prEditNIR.SetAttribute( "MaxVal", "255" ); 
 prEditNIR.SetAttribute( "Default", NumToStr(nirmin) ); 
 prEditNIR.SetAttribute( "Precision", "0" ); 
 
  [...code for additional list entries...]  
 
}  # end of SetDP() 

24 © 2003-2007  MicroImages, Inc.      www.microimages.com  
 


	Before Getting Started
	Welcome to Building Dialogs in SML
	Dialogs from XML Text
	A Simple Dialog Specification in XML
	Using Attributes for Tags
	Togglebuttons and Empty Tags
	Combobox and Items
	Radiogroup and Groupbox
	Numeric Fields and Layout Panes
	Pushbuttons and Listbox
	Menubuttons
	Edittext and Colorbutton
	Using Tabbed Pages
	Specification fro Flowpath Dialog

	Using an XML Dialog Specification
	Creating and Opening the Dialog Window
	Trapping XML Errors
	Trapping Dialog ID Errors
	Using an XML Editor
	Programming the OK and Cancel Buttons
	Specifying Callbacks for Dialog Buttons
	Using the Script Tag
	Getting Values from the Dialog
	Changing Control Settings in Callbacks
	Managing a Complex Dialog Window
	Suppressing Default Pushbuttons
	Creating a View in a Dialog Window
	A Complex Dialog with a View
	Dynamically Adding Dialog Components
	Raster Intervals Script Dialogs
	Using a Drawing Canvas
	Localizing a Script Dialog
	Modeless Dialogs
	Using a Canvas with a Modeless Dialog
	Index and MicroImages Product Information
	Reference Guide to SML Dialog Specifications in XML
	About XML
	Overview of Tag Set and Classes for SML Dialog Specifications
	Callbacks
	Example Dialog Specification in XML
	Common Dialog Element Attributes
	Dialog (Form) Elements
	Main Elements
	<root>
	<dialog>
	<script>
	<strings>
	<string>

	Layout Elements
	<pane>
	<page>
	<book>
	<groupbox>

	Control Elements
	<label>
	<pushbutton>
	<togglebutton>
	<colorbutton>
	<edittext>
	<editnumber>
	<item>
	<radiogroup>
	<combobox>
	<listbox>
	<menubutton>
	<canvas>


	Using an XML Dialog Specification with an SML Script
	Opening the Dialog
	Reading Dialog Control Values
	Setting Dialog Control Values
	Sample Script: Read and Set Control Values
	Dynamic Customization of Dialogs


