Tutorial

L ' ul | ‘ | n g
65 ,.' al 0 9 S| n S M L

TNTmlps

“TNTedit™ |
CINTView® !

Before Getting Started

For SML scripts that process multiple input objects or require user input for
numerous parameter settings, consider creating custom dial og windowsto stream-
line user interaction withthe script. Dialog setupisstreamlined by usingasimple
XML-based dialog specification. Thisbooklet showsyou how to construct cus-
tom dialogs and how to use them with an SML script.

Prerequisite Skills Thisbooklet assumesthat you have completed the exercises
in the Displaying Geospatial Data, TNT Product Concepts, and Writing Scripts
with SML tutorial booklets. Those exercises introduce essential skills and basic
techniquesthat are not covered again here. Please consult those bookletsand the
TNTmips Reference Manual for any review you need.

Sample Data The exercises presented in this booklet use sample data that is
distributed with the TNT products. If you do not have accessto aTNT products
DVD, you can download the data from the Microlmages web site. In particular,
this booklet uses sample files and scriptsin the smLbLG, scrRIPTING, and cB_DATA
sample data collections.

More Documentation Thisbooklet isintended only as an introduction to creat-
ing dialog windows in SML scripts. The Reference Guide to SML Dialog
Specifications in XML is available from the Microlmages web site and is al'so
included as an appendix in electronic versions of this tutorial booklet.

More Documentation This booklet isintended only as an introduction to the
TNT Geospatial Scripting Language. Descriptions of sample scripts can befound
inavariety of Technical Guidesthat are available from Microlmages web site.

TNTmips Pro, Basic, and Free TNTmips comesin three versions: TNTmips
Pro (which requires a software license key), low-cost TNTmips Basic, and
TNTmips Free. TNTmips Basic and TNTmips Free provide nearly all the capa-
bilities of TNTmips Pro but limit the size of the geospatial objects and attribute
tablesthat can beusedin your project. TNTmipsBasicand TNTmipsFreeallow
you to create and use scriptsin the Display process (database queries, style scripts,
macroscripts, and others) and the Geoformula process, but only TNTmips Pro
allowsyou to create and run complex standal one geospatial scripts.

Randall B. Smith, Ph.D., 5 January 2012
©Microlmages, Inc., 2003- 2012

You can print or read this booklet in color from Microlmages’ Web site. The
Web site is also your source for the newest Tutorial booklets on other topics.
You can download an installation guide, sample data, and the latest version
of TNTmips.

http://www.microimages.com

page 2

Building Dialogs in SML

Welcome to Building Dialogs in SML

You can usethegeospatial scripting language (SML)
inthe TNT products to write many types of custom
programsthat operate on the geospatial data objects
inyour TNT Project Files. If you arewriting ascript
for aone-time processing operation, the processing
parameters and names of input and output objects
andfilescan bewritten explicitly intothe script. But
any script you plan to reuse or provide to others
should include interactive dialogsto let the user se-
lect objects and enter program parameters.

SML provides severa waysfor youtoincludeinter-
active dialogs in your scripts. The Raster, Vector,
CAD, TIN, and File function groups each include
Getlnput...() , GetOutput...(), and other functionsthat
pop up adialog so the user can select or create ob-
jects and files as needed as the script is executed.
The functions in the Popup Dialog group provide
diaogs that prompt the user to enter numeric and
other types of parameter values. These functions
are easy to use, but each opens a separate transient
dialog window, so acomplex processing script might
require a barrage of popup dialogs.

You can make complex scripts easier to use by cre-
ating one or more custom dial og windowsthat bring
together object selection and
parameter inputs. Custom

Select Input Rasters:

STEPS

M choose Script / Edit
Script... from the
TNTmips main menu to
open the Spatial
Manipulation Language
editor window

Dialog specifications in XML
are introduced on pages 4-
15 with examples of all
basic dialog elements.
Pages 16-20 describe how
to set up the script to
process the dialog
specification and open the
dialog and the optional use
of an XML Editor.
Techniques for wiring the
dialog controls to script
actions are described on
pages 21-27. Pages 28-31
provide examples of
complex dialog windows and
dialogs with views. Use of a
drawing canvas, dialog
localization, and use of
modeless dialogs in event-
driven scripts are coveredon
pages 32-35.

= Hake Pan—Sharpened Color Conposite

M =E3

Band_3 X Apply contrast

Band_2 X Apply contrast

Band_1 ® Apply contrast

dialog windows in SML can || Red... |[pigPine.rve ¢
include text and icon || Green...|[Bigpine.rvc /
pushbuttons, toggleandradio | | Blue... |[gigpine.rue /
buttons, text and numeric | _Pan... |[BigPine.rve /

Band_g ® Apply contrast

fields, labels, menu buttons,
listboxes, and comboboxes,
among others. This booklet
provides an introduction to

HBS

Color Blending Hode: |[TEJll Conposite Type: |24-hit:|

Brovey

0K Cancel

building custom dialog windowsfor useinyour SML
scripts. It provides many sample dialog scriptsand
several complete scripts that incorporate complex
custom dialog windows.

An example of a custom
dialog window. We will
examine this dialog and its
components in more detail
on a later page.

page 3

Building Dialogs in SML

Dialogs from XML Text

Custom dialogs in SML make use of classes in the User Interface (GUI) class
group shown in the Script Referencewindow. ThisgroupincludesclassGUI_DLG
which representsadial og window, and aclassfor each type of layout element and
control that can be used in adialog window. To useacustom dialog with an SML
script, you must construct the dial og by designating what controlsit containsand
how they are arranged in the dialog. You must also “wire-up” the dialog by
incorporating code in your script to get the values and settings the script user
designatesin the dialog and to specify what actions should be taken by the script
when particular controls (such asadialog’'s OK button) are activated.

In order to simplify the process of laying out a dialog window, SML lets you
create and arrange dialog components using XML -formatted text, which we will
refer to as adialog specification. The dialog specification can be embedded in
the script as a string variable or read in from a separate XML file. The dialog
specification isinterpreted by SML and used to set up the GUI_DLG class and
the component controls your script will use.

Thefirst part of this booklet focuses on using XML to set up a dialog specifica
tion using different types of dialog controls. We will then discuss how to usethe
specification in a script, how to open the dialog and obtain settings from it, and
how to use the dialog to initiate script actions.

Dialog windowsyou create with adial og specification are automatically supplied
with pushbuttons at the bottom of the window (such as an OK button) that you
can usetoinitiate script actions. You can open adiaogin either modal or modeless
form, which are described and illustrated bel ow.

= TIGER Road Options [_T0] = TIGER Road Options [_[C[x]

Road processing options: Road processing options:

-l Extract Road Lines -l Extract Road Lines
- Hake Roads Buffer Zone

Buffer Distance: I 100 neters

0K Cancel

Modal Dialog

- Hake Roads Buffer Zone
Buf fer Distance: I 100 neters
0K | Clusel Flpplg|

Modeless Dialog

A modal dialog suspends other script

operations as long as the dialog is open.

It is automatically supplied with OK and
Cancel buttons. A modal dialog is
typically used in a standalone script to
gather all inputs and process settings
prior to running the script process.

A modeless dialog can remain open while
other script operations take place. A
modeless dialog is automatically supplied
with OK, Close, and Apply buttons. A
modeless dialog is required in event-
driven scripts such as tool scripts and
display control scripts.

page 4

Building Dialogs in SML

A Simple Dialog Specification in XML

XML isaform of structured text that makes use of
tags (enclosed between < and > characters) to de-
limit and identify elements of text data. Inan SML
dialog specification, the datael ementsidentified by
the XML tags correspond to specific components of
adialog window, such as buttons and labels. Tags
occur in pairs, with astart tag and end tag enclosing
therelevant text.

As an example, look at the dialog specification for
the Hello World dialog window shown below. This
modal dialog window consistsof alabel element and
two pushbuttons (OK and Cancel, which are sup-
plied automatically). Thetwo <label> tags enclose
and identify the text to be used for the label on the
dialog. Notethat start and end tags use the sametag
name, but in the end tag it is preceded by the for-
ward slash (/) character.

STEPS

M choose File / Open/

* SML File..., navigate to

the smLbLc directory, and

select GENDLG.SML.

run the script

when prompted to select

the dialog specification,

select HELLo.xML in the
smLbLG directory and click

[OK]

M compare the dialog
window to its
specification

M keep the Hello World
dialog open and proceed
to the next page

™

= Hello World

I (] E3

Sanple Dialog Hindow

0K Cancel

Data elements in
XML can be nested
inside other data ele-
ments (in one or more
levels) to indicate
membership in a

<?xml version="1.0"?>
<root>

</dialog>
</root>

<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

group. Thisis a good match to the structure of a
dia og window, in which somewindow components
are contained within other components. In this ex-
amplethedia og el ement (whichidentifiesthedialog
window asawhole€) containsthelabel element. The
dialog isin turn contained within the root element,
whichistherequired top-level elementinany dialog
specification.

For ease of editing and reading a dialog specifica-
tion, the start and end tags for “container” dialog
elements should be placed on separatetext lines, with
the contained elements identified on intervening
lines. Different levelsof indents should also be used
to clarify thisnested, tree-like structure.

XML, the Extensible Markup
Language, is a generic
meta-language that allows
the creation of structured,
self-describing text. XML
supplies a structure and
syntax, but a specific set of
tags and attributes is
required to define the
meaning of the elements in
an XML file. Microlmages
has created such a set of
tags and attributes to identify
the various types of dialog
components and their
properties. SML interprets
these tags in order to create
your dialog window.

page 5

Building Dialogs in SML

Using Attributes for Tags

STEPS

M examine the attributes
for the elements in the
dialog specification

M click [OK] on the Hello
World dialog window to
end the script

= Hello Morld

_ |07 x|

Sanple Dialog Hindow

DK Cancel

To conform to XML format
standards, the dialog
specification should begin
with a standard XML
Declaration specifying the
version of XML.

Start-tags can aso include one or more attributes,
which are predefined keywords to which you can
assign avalue. The assignment hasthe form:

attribute =
Inadialog specification, each type of dialog compo-
nent has a predefined set of attributes. Each time
you usethat component type, you can assign attribute
valuesto define the specific propertiesyou want that
component to have. Attribute namesare case-sensi-
tive, but you can list attributes in any order within
the start-tag.

“value”

Any dialog component can have an id attribute, a
unique identifier for that element. The value of an
id attribute can be any character string, but it must
be unique within the dialog. Use anid attribute for
the dialog element and any other element that your
script needs to access, such asto set or read values.

<root>

</dialog>
</root>

AY .
<?xml version="1.0"?>

<dialog id="hello" Title="Hello World">
<label>Sample Dialog Window</label>

In the Hello World
dialog, thediaog €l-
ement has an id
atribute that the script
uses to create and

In order for SML to correctly

interpret the dialog

specification, it must follow

the simple syntax rules that

define a well-formed XML

document:

® every element must have
both start and end tags

® all attribute values must
be in quotes

® elements may not
overlap

open the actual dialog window. It also has a Title
attribute that supplies the text for the window title.
Thelabel element inthedialog could also haveanid
attribute, but hereit doesn’t need one. Thelabel text
is simply a static part of the dialog, so there is no
need for the script to have any interactive accessto
it. Thereforetheid attribute is omitted.

In the next few pageswe will examine several addi-
tional dialog windows and their specifications in
XML toillugtrate the use of other dialog components.

The Reference Guide to SML Dialog Specifications in XML contains complete
lists of the attributes available for use with each type of dialog element and
guidelines for using dialog specifications in SML scripts. Itis available from the
Microlmages web site and is appended to PDF versions of this booklet.

page 6

Building Dialogs in SML

Togglebuttons and Empty Tags

The Extraction Options sample dialog window has
alabel and threetogglebuttons. Each of these com-
ponents is represented by an element within the
dialog element inthedialog specification. Notethat
these componentsarelaid out from top to bottomin
the window, rather than from left to right. Thisis
the default layout order for componentsin adial og.
Later we will see how you can control the layout
orientation.

Each togglebutton element in thisexample hasthree
attributes: id, Name, and Selected. Theid attribute
is needed so that the SML script can find out
whether each togglebutton hasbeen set or not. The
Name attribute specifies text for the label that is
automatically placed to theright of the button. The
Selected attribute lets you set the default state for
each button when the dialog window opens. The
buttonispushedin (on) if you set Selected = “true’

and pushed out (off) if you set Selected = “false”.

STEPS

M run the cenbLG script
again

when prompted to select
the dialog specification,
select TicgeropP.xML in the
smLpLG directory and click
[OK]

compare the dialog
window to its
specification

click [OK] on the
Extraction Options dialog
window to end the script

|

= Extraction Options MEIE

Extract from TIGER:
® City Polygons
- Yoting Districts

-l Congressional Districts

DK Cancel

<?xml version="1.0"?>
<root>

<label>Extract from TIGER:</label>
Selected="true"/>
Selected="false" />
Selected="false" />

</dialog>
</root>

<dialog id="tigerop" Title="Extraction Options">
<togglebutton id="citybtn" Name="City Polygons"
<togglebutton id="votebtn" Name="Voting Districts"

<togglebutton id="congbtn" Name="Congressional Districts"

Note that all of the information required to set up a
togglebuttonisincludedinthe start tag nameand its
attributes. Unlikethelabel element, thereisno other
text to be enclosed by separate start and end tags. In
this case the two tags can be combined into asingle
empty tag. The dash character (/) that normally
beginsan end tag is placed beforethe closing > char-
acter of an empty tag.

The dialog specifications
shown in this booklet are
color-coded for ease of
reading. Standard XML
formatting characters are in
blue, tag names are in purple
or red, attribute keywords
are in green, and attribute
values and other text are in
black.

page 7

Building Dialogs in SML

Combobox and Items

STEPS

M run the cenoLc script
again

M when prompted to select
the dialog specification,
select seLcomp.xmL in the
smLbLG directory and click
[OK]

M compare the dialog
window to its
specification

M click [OK] on the Select
Composite dialog
window to end the script

= Select Conposite M mE

Select Composite Type:
|24—hit conposite ¥|

DK Cancel

= Select Conposite M@ E

Select Conposite Type:
2d-bit conpozite d|

[?d-bit conposite ‘
16-bit conposite
8-bit conposite

You can use the TNTmips
Text File Editor or any other
text editor to open and
examine the dialog
specification XML files used
in these exercises.

The Select Composite sample dialog window in-
cludes alabel and a type of menu control called a
combobox. A recessed box resembling an editable
text field shows the current menu selection, and a
small icon at the right side of the control is used to
drop down the menu choices.

The possible selections for any menu-type control
(combobox, listbox, and menubutton) are createdin
adialog specification by adding item elementswithin
the parent control element. In this example the
combobox control element includesthree item ele-
mentsthat specify different typesof color composite
raster. Anitem element resemblesalabel elementin
that its start and end tags enclose the text for the
menu entry. However, an item element also has a
Value attribute. The text string you assign to this
attribute becomesthe*“value” of the combobox con-
trol when that menuitemisselected. Eachitemina
menu control therefore should have adifferent char-
acter string assigned for its value. The item value
strings in this example are numbers corresponding
to the bit-depths of the composites.

Menu-type controlsthat show the selected menuitem
(combaobox and listbox) have a Default attribute that
you can use to indicate which item should be the
default selection. Simply assign that item’s value
string as the value of the Default attribute. As an
aternative, you can use the item attribute Selected,
whichiseither “true” or “false”. If Selected="true”,

- vl om that item is
<ZXm versions= . 2> |n|t|a||y
<root>

<dialog id="selcomp" Title="Select Composite"> selected

<label>Select Composite Type:</label> (overriding
<combobox id="comptype" Default="24"> the Default
<item Value="24">24-bit composite</item> .
<item Value="16">16-bit composite</item> attribute of
<item Value="8">8-bit composite</item> the parent
/</combobox> control, if
</dialog>
</root> any)'

page 8

Building Dialogs in SML

Radiogroup and Groupbox

The Select Process sample dialog window includes
a hybrid type of control caled a radiogroup. A
radiogroup isagroup of small buttons (resembling
toggl ebuttons) in which only onebutton can beturned
on at atime. Turning on one button automatically
turns off any other button that was previously turned
on. So aradiogroup functionslikeamenuinwhich
all selectionsare constantly visible.

The specification for aradiogroup hasthe same struc-
ture as the other menu-type controls. The item
elementsinside the radiogroup element provide the
names for the buttons (analagousto the entriesin a
menu) and the value for the control when that button
is turned on. This example shows an aternative
method for specifying thetext string for amenuitem.
In the exampl e on the previous page, theitem name
was provided astext between start and end tags. In
the Select Process dialog, the items are specified
using empty tags with a Name attribute. Either
method can be used for any menu-type control.

Thisdialog also includes agroupbox, asimple rect-
angular frame around one or more other controls,
which can aso be automatically provided with ala-
bel inside the top edge using a Name attribute. A
groupbox is one type of layout component in adia-
log. A layout component does not provide any
program control, but merely aidsin thelayout of the
dialog window. Other layout componentsare shown
inlater sample dialogs.

STEPS

M run the cenoLc script
again

M when prompted to select
the dialog specification,
select rRabIOGP.XML in the
smLbLG directory and click
[OK]

M compare the dialog
window to its
specification

M click [OK] on the Select
Process dialog window
to end the script

= Select Process HnE]

Process:

I~ Entire Scene
_JAOI Polygon

JHanual Selection

DK Cancel

In the sample dialog
specifications in this booklet,
tags for control components
are shown in red and tags
for layout and main-level
dialog elements are shown
in purple.

<?xml version="1.0"?>
<root>

<dialog id="radiogp" Title="Select Process">
<groupbox Name=" Process: " ExtraBorder="4">
<radiogroup id="processgp" Default="entire">
<item Value="entire" Name="Entire Scene"/>
<item Value="polygon" Name="AOI Polygon"/>
<item Value="manual" Name="Manual Selection"/>
</radiogroup>
</groupbox>
</dialog>
</root>

page 9

Building Dialogs in SML

Numeric Fields and Layout Panes

STEPS

M run the cenbLG script
again

when prompted to select
the dialog specification,
select TiGrDS.xML in the

|

smLpLG directory and click

[OK]

compare the dialog
window to its
specification

click [OK] on the TIGER
Road Options dialog
window to end the script

= TIGER Road Dptions

Road processing options:

-l Extract Road Lines

Buffer Distance:

/

I Hake Roads Buffer Zone
100 neters

[Zant:el

The TIGER Road Options sample dialog window
introducesthelayout el ement you will probably use
most often, the pane. A layout pane is simply an
invisible container in which you can place multiple
dialog components and control their arrangement.
The most important attribute of a pane element is
Orientation, which can beeither “horizontal” or “ver-
tical”. Thethree components near the bottom of this
dialog window (two labels surrounding an editable
numeric field) are placed within a pane with hori-
zontal orientation, so the components are arranged
in order from left to right across the pane. If
the pane orientationisset to “vertical”, the el-
ements within the pane are arranged from top
to bottom.

1 (] E3

The numeric field is created using an
editnumber element in thedial og specification.
The Width attribute sets the width in typical
characters, whilethe Precision attribute setsthe

An invisible layout pane with
horizontal orientation
contains these dialog
components.

number of digitsafter the decimal point (the default
is6). TheDefault and MinVal attributes set thevaue
initially displayed in the field and the minimum al-
lowed value, respectively. Thereisalsoanavailable
MaxVal attribute to set the maximum allowed value.
Thiscontrol hasno built-in label, so the dialog uses
a label element to the left of the field to label its
purpose and another to theright to identify the units.

<root>

<?xml version="1.0"?>

<dialog id="tigrds" Title="TIGER Road Options">
<label>Road processing options:</label>
<togglebutton id="getrds" Name="Extract Road Lines"/>
<togglebutton id="mkbuf" Name="Make Roads Buffer Zone"/>
<pane Orientation="horizontal">
<label>Buffer Distance:</label>
<editnumber id="buffdist" Width="4" Precision="0"
Default="100" MinVal="0"/>
<label>meters</label>
</pane>
</dialog>
</root>

page 10

Building Dialogs in SML

Pushbuttons and Listbox
The Languages sampledialog window illustratesthe | STEPS _
use of pushbuttonsand alistbox. Theupper paneof | ¥ run the cenoLe script
the dial og includestwo pushbuttons, onewithatext | 3\%2 prompted to select

label and onewith anicon. Usethe Name attribute
for the pushbutton tag to specify thetext for the but-
tonlabel or the Icon attribute to specify the name of
theicon to be used. Theicon name must match an
iconid listed intheinternal TNT referencefiles. To
seeacompletelist of thevalidiconids, openthe Script
Reference window from the SML editor and select
the GUI_CTRL_TOGGLEBUTTON class. The
valid iconid values are listed under the iconid pa-
rameter of the Createl con() class method.

A listbox provides alist of selectable items. If the
valuefor the Height attributeislessthan the number
of items, the box is provided with avertical scrollbar.
A listbox can be set to allow the selection of more
than oneof itsitemsby using the SelectSyl e attribute.
The default value “single” for this attribute permits
only one item to be selected at atime. The value
“multi” used in this dialog specification allows the
user to select multiple entries by simply clicking on
each one(clicking on an aready-sel ected item toggles
it off). Thevalue“extended” alowsWindows-style
item selection by using the mouse with the SHIFT
or CTRL key.

<?xml version="1.0"?>
<root>
<dialog id="language" Title="Languages">
<pane Orientation="horizontal">
<pushbutton id="dict"
<pushbutton id="file"
</pane>
<label>Select languages:</label>

Name="Dictionary...
Icon="CREATE FILE"/>

<listbox id="language" Height="4" SelectStyle="multi">

<item Value="english" Selected="true"
<item Value="french">French</item>
<item Value="spanish">Spanish</item>
<item Value="japanese">Japanese</item>
<item Value="german">German</item>
</listbox>
</dialog>
</root>

the dialog specification,
select LANGUAGE.xML in the
smLbLG directory and click
[OK]

M select several languages

in the listbox

M compare the dialog

window to its
specification
click [OK] on the
Languages dialog
window to end the script

Dictionary,.. L:ﬂ

Select languages:

Cancel

Select languages:

Cancel

||/>

>English</item>

page 11

Building Dialogs in SML

Menubuttons
STEPS _ A dialog window can also include menubuttons, but-
& ;L;’;me GENDLG SCript tonsthat drop down a sel ection menu when pressed.

Like apushbutton, amenubutton can have either an

M when prompted to select
the dialog specification,
select procPTs.XML in the
smLbLG directory and click
[OK]

M click on the two menu
buttons in the upper part
of the dialog window

M compare the dialog
window to its
specification

M click [OK] on the
Process Selected Points
dialog window to end the
script

=l Process SeledimEX

[3| Point Action,..
[Text File...Jncel

=l Process Seledilim B

D | Point Action,..

Open Tent File |
.= Cloze Text File

icon or a static text label. Since a menubutton has
noway of showingwhichitemiscurrently selected,
it is best used to launch one of several aternative
actions from the dialog.

The Process Selected Point sample dialog might be
used with aTool Script that allowsthe user to select
pointsin aView window. It hastwo menubuttons,
one with an icon and one with a label. The two
menubuttons are inside a horizontal pane so they
appear sideby sideinthedialogwindow. Like other
menu controls, selectionsfor amenubutton are reg-
istered using items within the menubutton element.

When you useanicon for apushbutton, togglebutton,
or menubutton, you can use the Tool Tip attribute to
set the text to be shown in the popup Tool Tip when
the mouse cursor hovers over
theicon.

g Point Action,..|

Save Coordinates to Text File
- Conpute Buffer Zone
Find Enclosing Polygon

<?xml version="1.0"?>

<root>

<dialog id="procpts"
<pane Orientation="horizontal">
<menubutton id="file"
ToolTip="Text File...">
<item Value="open">Open Text File</item>
<item Value="close">Close Text File</item>

</menubutton>

<menubutton id="ptaction"
<item Value="save">Save Coordinates to Text File</item>
<item Value="buffer">Compute Buffer Zone</item>
<item Value="polygon">Find Enclosing Polygon</item>

</menubutton>
</pane>
</dialog>
</root>

Title="Process Selected Points">

Icon="DESKTOP FILE"

Name="Point Action...">

page 12

Building Dialogs in SML

Edittext and Colorbutton

STEPS

The Name and Color sample dialog window shows
two additional types of controls, an edittext and a
colorbutton. An edittext control allows the user to
enter and/or edit atext string. The MaxLength at-
tribute specifiesthe maximum allowed length of the
string in characters, while the Width attribute speci-
fies the width of the editable field (in “typical”
characters). Text is aligned to the left side of the
field by default. Toright-align thetext, usethe Jus-
tify attribute with the value “right”. The edittext
control does not have abuilt-in label.

Pressing the colorbutton control opens a standard
Color Editor window to allow the selection of acolor

[cotor I - Transparent

M run the cenbLG script

again

M when prompted to select

the dialog specification,
select NMcoLor.xML in the
smLpLG directory and click
[OK]

M compare the dialog

window to its
specification

M click [OK] on the Name

and Color dialog window
to end the script

Enter Hame: ILincoln
Choose Color: -

Select Fron:

RGB | HIS | WBS | CHY | CHYK Palette |

HicroInages Default —

0K Cancel

fromapalette or by specifying

RGB, HIS or other color val- o

Cancel

Help

ues. The selected color is
shown on the colorbutton after the selection dialog
is closed. The selected color is maintained in a
COLOR class structure as red, green, and blue val-
ues(each 0to 100) and an optiond transparency vaue
(also 0 to 100). The colorbutton control does not
have abuilt-inlabel.

= Hane and Color

]l x]

Enter Hane: ILj_ncoln
Choose Color: -
[11.4 Cancel

<?xml version="1.0"?>
<root>

<pane Orientation="horizontal">
<label>Enter Name:</label>

</pane>
<pane Orientation="horizontal">
<label>Choose Color:</label>

</pane>
</dialog>
</root>

<dialog Title="Name and Color" id="nmcolor">

<edittext id="name" MaxLength="10" Width="10"/>

<colorbutton id="colorbtn" AllowTransparent="true"/>

page 13

Building Dialogs in SML

Using Tabbed Pages

STEPS

M run the cenbLG script
again

M when prompted to select
the dialog specification,
select FLowpATH.XML in the
smLpLG directory and click
[OK]

M click on each of the
panel tabs to examine
the included controls

M compare the dialog
window to its
specification

M click [OK] on the Flow
Path and Buffer Zone
dialog window to end the
script

The FLOWPATH tool script
performs watershed analysis
operations on an elevation
model shown in a View
window, using seed points
placed in the window
interactively by the point tool
invoked by the script.

If you are creating adial og window with many con-
trols, you can group controls together on separate
tabbed panels. To do so, you first create abook ele-
ment and create one or more page elementsinsideit.
Each page element corresponds to a tabbed panel.
The Name attribute value that you assign for each
page provides the text that is placed on the panel’s
tab. Controls can be placed and arranged within a
pagejust asinthe main dialog or in any layout ele-
ment.

The Flowpath sample dialog provides an example
based on the control dialog for the Flowpath script,
one of the sample tool scripts distributed with
TNTmips. The two panels of this dialog are illus-
trated below, and the dialog specification is shown
on the facing page. This dialog places the book of
tabbed pagesimmediately insidethe dialog element,
but the book could be placed inside any layout ele-
ment (except directly inside another book element).
One page includes a number of different types of
controlsfor general toolscript operations, whilethe
other page provides a set of colorbuttons to desig-
nate colors for different vector overlays created by
the script.

=Flow Path and Buffer Zone MNE =1Flow Path and Buffer Zone MEE

Controls |[Zulur's |

ﬂ Hunber of Seedpoints,..

Controls Colors |

- Flow path color

® Conpute Flow Path

| Comnpute Buffer Zone

Buffer Distance:

- Hove Seed Point to Flow Path - Basin color

® Conpute Upstrean Basin

- Buffer zone color
- Extentsz box color

100

0K Cancel 114 Cancel

page 14

Building Dialogs in SML

Specification for Flowpath Dialog

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM “smlforms.dtd”>
<root>
<dialog id="flowpath" Title="Flow Path and Buffer Zone">
<book>
<page Name="Controls">
<pane Orientation="horizontal">
<pushbutton Name="Save" Icon="FILE SAVE"
ToolTip="Save Output Layers..."/>
<pushbutton Name="Remove" Icon="CONTROL SUBTRACT CYAN"
ToolTip="Remove Output Layers"/>
<pushbutton Name="Number of Seedpoints..."/>
</pane>
<pane Orientation="vertical">
<togglebutton id="btnSnap" Name="Move Seed Point to
Flow Path" Selected="false"/>
<togglebutton id="btnFlow" Name="Compute Flow Path"
Selected="true"/>
<togglebutton id="btnBasin" Name="Compute Upstream
Basin" Selected="true"/>
<togglebutton id="btnBuffer" Name="Compute Buffer Zone"
Selected="false"/>

</pane>
<pane Orientation="horizontal">
<label>Buffer Distance: </label>
<editnumber id="buffDist" Width="5" Default="100"
Precision="0" MinVal="0"/>
</pane>
</page>
<page Name="Colors" Orientation="vertical">
<pane Orientation="horizontal">
<colorbutton id="fcolor"/>
<label> Flow path color</label>
</pane>
<pane Orientation="horizontal">
<colorbutton id="bacolor"/>
<label> Basin color</label>
</pane>
<pane Orientation="horizontal">
<colorbutton id="bucolor"/>
<label> Buffer zone color</label>
</pane>
<pane Orientation="horizontal">
<colorbutton id="bocolor"/>
<label> Extents box color</label>
</pane>
</page>
</book>
</dialog>
</root>

page 15

Building Dialogs in SML

Using an XML Dialog Specification

STEPS
M choose File / Open /
* SML File... from the
SML editor window
M select HeLLoxmL1.smL from
the smLbLG directory
examine the script
repeat, but this time
select HELLOXML2.sML from
the smLbLc directory
run the second script
press [OK] on the Hello
World sample dialog
window to end the script

HE

NI

helloXML1l.sml

class STRING xmlfile$;

class XMLDOC dlgdoc;
dlgdoc.Read (xmlfile$) ;

Now that we haveintroduced the most common com-
ponents of a dialog and the structure of the dialog
specification, we can begin to examine how to usea
specification with an SML script. Thedialog speci-
fication must be read and interpreted when the script
iS run to create an XML document structure in
memory. This structure is an instance of the class
XMLDOC. Thespecification can either bein asepa
rate file or embedded in the script. Different
XMLDOC class methods are used in these two situ-
ationsto ingest the specification and assign it to the
class instance. The two scripts for this exercise
implement the Hello World sasmpledialog andillus-
trate these two approaches (script excerpts below).

Script helloXML 1.sml ingeststhe specification from
a separate file in the same directory using the

xmlfile$ = context.ScriptDir + "/hello.xml";

Read(xmifile$) class
method in XMLDOC.

= Hello Horld

I (] E3

Sanple Dialog Hindow

DK Cancel

helloXML2.sml

class STRING xml$;

This method reads the file and parses the text to

createthe XML structurein memory. Thefilename

passed to the Read() method must include the full
directory path to thefileaswell asthefileextension.
The filename string is constructed in this example
by astring expression using the script’'SCONTEXT
classstructure. Theclassmember _context.ScriptDir
providesthe path to the directory containing the cur-
rent SML script. The string expression concatenates
the path with the name of the file.

The sample script helloXML2.sml has the dialog
specification embedded within it, assigned to astring

xml$="'<?xml version="1.0"?>

<root>

<dialog id = "hello" title="Hello World">
<label>Sample Dialog Window</label>

</dialog>
</root>"';

class XMLDOC dlgdoc;
dlgdoc.Parse (xml$) ;

variable. Notethe single quotation marksen-
closing the specification,
which enable multiple
lines of text to be used

within the assignment statement. The string vari-
able is then passed to the XMLDOC class method
Parse(xml$), which interprets the text and creates
the XMLDOC classinstance in memory.

page 16

Building Dialogs in SML

Creating and Opening the Dialog Window

The XML structure created in memory by the Read()
or Parse() method of classXMLDOC containsall of
the elementsin the dialog specification in a hierar-
chical, tree-like structure. Each element, including
the dialog element itself, can also be thought of asa
“node” inthe structure. To create and openthedia-
log window, your SML script must retrievethedialog
node from the parsed XML document structure and
identify it asthe source for the dialog window.

The two scripts you ran on the previous page differ
only in how they ingest the dialog specification; the
second half of each (excerpted below) isidentical,
and implements the steps outlined above. The dia-
log node in the Hello World specification has the
unique id attribute “hello” that can be used to re-

STEPS

M examine the second half
of the HELLOXML2.smL
script

M mE

= Hello Horld

Sanple Dialog MHindow

p DK | Cancel

/

A modal dialog window
created using an XML
specification is automatically
provided with OK and
Cancel buttons.

trieveit. Thisisdoneusing
the XMLDOC class method
GetElementByID(), which
returns an instance of class
XMLNODE. This is the

dlgnode =

dlgwin.DoModal () ;

class XMLNODE dlgnode;
dlgdoc.GetElementByID ("hello") ;

class GUI_DLG dlgwin;
dlgwin.SetXMLNode (dlgnode) ;

class that represents any
givennodeinaparsed XML document. Inthisscript
the dialog node is represented by the class variable
dignode.

The dialog window itself is an instance of class
GUI_DLG represented in this script by class vari-
able digwin. The class method SetXMLNode() in
class GUI_DL G isused to identify the dialog node
in the XML structure as the source for the dialog
window. The final script statement uses the
GUI_DLG class method DoModal() to create and
open the dialog window. This method opens the
window as a modal dialog, meaning that once the
dialog is opened, no other parts of the script can be
executed until the dialog is closed. Modal dialogs
are easy to manage and are appropriate for selecting
objects and/or gathering processing parameters for
standalone SML processing scripts.

Dialog controls have a
common set of attributes to
allow you to control their
alignment and resize
behavior:

HorizAlign (“Left”, “Right”, or
“Center”) and VertAlign
(“Top”, “Center”, or “Bottom”)
let you control the alignment
of the controls within their
parent pane.

HorizResize and VertResize
determine how the control
behaves when the parent is
resized (such as when the
user resizes the dialog
window). Possible values
are “Expand”, “Fixed”, and
“Relative” (keeps same
proportion of space).

page 17

Building Dialogs in SML

Trapping XML Errors

STEPS

M choose File / Open /
* SML File... and select
XMLERRs1.smL from the
sMLDLG directory

M run the script; note the
error message reporting
that the XMLNODE
parameter is NULL

M choose File / Open
again, and select
XMLERRS2.SML

M in the Message window
that opens, press the
Details button

M press the [OK] button on
both message windows
to end the script

numeric errXML;
class XMLDOC dlgdoc;

if (errXML < 0) {
PopupError (errXML) ;
Exit();

® Error code = -1931

Invalid XHL syntax reading file ’CiMtntdata‘snldlgherrors.xnl”.
THT Yersion: 2008374

Hodule; xnl.c Revision: 1,76 Line: 1381

In order for SML to interpret adia og specification
correctly, the specification must be well-formed,
meaning that it usesthe proper notation for tagsand
attributes and has the nested structure expected of
an XML document. The syntax of the dialog speci-
fication is checked by the Read() or Parse() class
method when the script is run, but XML syntax er-
rors are not automatically reported to you by SML.
Theexcerpt of script xmlerrs2.sml below shows how
you can get an XML syntax error report.

The Read() and Parse() class methods return a nu-
meric valuethat isan error code (anegativevaue) if
there are XML syntax errors or O if there are no er-
rors. Thesample script assignsthereturned valueto
anumeric variable err XML, then checksthe value of
thevariable. If errXML islessthan O, theerror value

errXML = dlgdoc.Read (:Ixml files);|S passed to the PopupError() function,

which opens a M essage window reporting
that there isan XML syntax error. If you pressthe
Details button on this window, a second message

} window opens and liststhe errors.
The specification read by thetwo

sample scripts in this exercise
(excerpted below) is a copy of

0K Details, ..

Save Text...

the groupbox/radiobox dialog

Send Report. |

specification described previ-
=rr ously, but the closing

Entity: line B: parser error :

Entity: line 8: parser error
Hanual

Entity: line 8: parser error 3

attributes construct error
<iten Value="nanual Hane="Hanual Selection"/>

Specification nandate value for attribute
<iten Yalue="nanual Hane="Hanual Selection"/>

attributes construct error

double quotation mark
isomitted for the Value
attribute value in the
third radiogroup item.

<item Value="poly:
<item Value="manu
</radiogroup>

<radiogroup id="processgp"
<item Value="entire" Name="Entire Scene"/>

Subsequent
portions of the
specification
cannot be in-
terpreted

Default="entire">

" Name="AOI Polygon"/>
ame="Manual Selection"/>

The closing quotation mark
is missing for the Value
attribute.

correctly, triggering anumber of error listingsinthe
details message window.

page 18

Building Dialogs in SML

Trapping Dialog ID Errors

Evenif thedialog specificationiswell-formed XML,
theremay beerrorsin the use or spelling of attribute
names and values that prevent the dialog window
from being constructed correctly. If you are using
the SML editor or atext editor to create the dialog
specification, you should carefully examinethe spell-
ing and use of attribute names and values to ensure
that they are consistent within the specification and
script and that they conform to the usage rules out-
lined in the Reference Guide to SML Dialog
Foecificationsin XML. The Guideliststheattributes
that are predefined for use with each dialog element.
Valid values are also listed for those attributes that
have afixed set of possible values.

STEPS

M choose File / Open/
* SML File... and select
XMLERRs3.sML from the
smLDLG directory

M run the script; note the
error messages that
appear

M press [OK] on the
message windows to
end the script

Problems with at- [5 T version="1.0"25
tribute names may |<root>

asopreventthedialog | <dialog ide="Se1ect Process">

fromopeningatal. In
the example used for this exercise, the dialog ele-
ment id values in the dialog specification and the
SML script do not match. The script excerpt shown
here illustrates how the script can explicitly check

The dialog id attribute value
in the specification does not
match the id value expected
by the script.

if (dlgnode == 0) {

}

class XMLNODE dlgnode;
dlgnode = dlgdoc.GetElementByID(("radiogp") :

PopupMessage ("Could not find dialog node in XML document") ;

for thiscondition. The GetElementByID()

method inclassXMLDOC returnsavalid Could not find dialog node in XHL docunent

instance of classXMLNODE if the speci-

o]

fied dialog id is found. If it is not, the
classinstancereturned isempty. In SML an empty
class instance can be represented by the numeric
value 0. The script excerpt compares the returned
class to 0 and if the comparison is true it opens a
message window stating that the dialog node was
not found.

Performing a manual syntax
check from the SML editor
window (Syntax / Check...)
does not evaluate the XML
syntax of any embedded or
referenced dialog
specification.

page 19

Building Dialogs in SML

Using an XML Editor

You can create embedded dialog specifications directly with the SML editor or
create separate dial og specification fileswith any text editor. But youmay find it
easier to create your specifications using aspecialized XML editor. A number of
free, shareware, and commercial XML editorsare availablefor download viathe
World WideWeb. Nearly all XML editorscan check that the XML iswell-formed,
and many provide agraphical Tree View of the document structurethat simplifies
editing. Some editors can comparethe XML to adocument model that specifies
the available tags, their allowed attributes, and the relationships permitted be-
tween elements (for exampl e, the only allowed child element of acomboboxisan
item). An XML filethat conformsto its document model is said to be valid, and
the checking procedureis called validation. Onewidely-supported form of XML
document model is a Document Type Definition (DTD) file. Microlmages has
createdaDTD filefor SML dialog specifications (smlforms.dtd) that can befound
inthe suLbLc directory. An excerpt of thisfileis shown below.

<!-- SMLFORMS DTD Version 2.0 -->
<!-- For use with SML Dialog Specifications in XML -->
<!-- MicroImages, Inc. --> Excerpt showing
the beginning lines
<l-- =ss=ssss=ssssssssssss=ssssssssssss======== --> | Gf the SMLFORMS
<!l-- MAIN ELEMENTS -—> DTD file, defining
<l-- ======s======s=ss===s==sss=ss=sssssss=s=== --> the main elements
<root>, <script>,
<!ELEMENT root (dialog | script | strings)* > and <dialog>.
<!ELEMENT script (#PCDATA)>
<!ELEMENT dialog (book | pane | groupbox | label | pushbutton |
togglebutton | colorbutton | edittext | editnumber | radiogroup |
combobox | menubutton | listbox | canvas)*>

Microlmages hasa so provided aDidog Specification Template File (digtempl .xml,
shown below) that you can openinavalidating XML editor to createyour dialog
specifications. Thetemplateincludestheroot and dial og elements preceded by a
Document Type Declaration that defines the name of the root element (<root>)
and the name of the DTD and itslocation (in the same directory asthe XML file
being edited). Most validating XML editorsread the DTD and provide menus of
valid elements that can be inserted into the current element, menus of attributes

: available to be added for
<?xml version="1.0"?>

<IDOCTYPE root SYSTEM "smlforms.dtdrs | €&chtypeof element, and

<root> Dialog Specification Template File menus of attribute values

:?;iiig>> (dlgtempl.xml) containing the for thOS? attributes th_at
</roots g Document Type Declaration and have a fixed set of valid
<root> and <dialog> elements. values.

page 20

Building Dialogs in SML

Programming the OK and Cancel Buttons

STEPS

One main role of adialog window is to record pa-
rameter choicesand valuesand passthem onfor use
by the SML script after thedialog closes. Thereare
several ways in which you can use the default OK
and Cancel pushbuttons on amodal dialog to man-
agethisinteraction.

TheDoModal() classmethod of the GUI_DL G class,
which you use to open amodal dialog, returns anu-
meric value when the dialog is closed by either the
OK or Cancel button. Pressing OK returns avalue
of 0 and pressing Cancel returns avalue of -1. A
simple way to carry out script actions using these
buttonsisto check the valuereturned by thismethod
and take alternative actions based on this value.

The simple objective in this example is to print
“Hello” to the consolein the selected language when
the OK diaog button is pressed. As shown in the
script excerpt below, the value returned by the
DoModal() method is stored in a numeric variable
(digreturn), and itsva ueisthen checked. If thevaue
is0, thevaueof thestring variablelanguage$ isread
from the dialog’'s
listbox (moreon that

)

HE

choose File / Open /

* SML File... and select
BoNJOUR1.smL from the
smLDLG directory

run the script

select a language from
the listbox

M press [OK] on the

Bonjour! sample dialog
window; a translation of
“Hello!” is printed to the
Console window in the

selected language, and
script execution ends

M repeat using a different

language

M examine the callback

procedure in the script

= Console Hindow MmE3

Bon jour! -\I

= Bon joas-! Hm|E3

Language

French B

Gernan
Spanish I

later) and used to set
the text to be printed
totheconsole. If the
value of digreturnis

0) {

if (dlgreturn ==

dlgreturn = dlg.DoModal() ;

local class STRING language$;
language$ = dlg.GetCtrlvValueStr ("listbox");

DK Cancel |

-1, the Exit function
is called to exit the
script.

if (dlgreturn == -1) {

if (language$ == "English") then
print ("Hello!");

else if (language$ == "French") then
print ("Bonjour!") ;

else if (language$ == "German") then
print ("Hallo!");

else if (language$ == "Spanish") then
print ("Holal!™") ;

}

Exit();

}

page 21

Building Dialogs in SML

Specifying Callbacks for Dialog Buttons

STEPS

)

HE

choose File / Open /

* SML File... and select
BONJOUR2.sML from the
sMLDLG directory

run the script

select a language from
the listbox

M press [OK] on the

Bonjour! sample dialog
window; a translation of
“Hello!” is printed to the
Console window in the

selected language, and
script execution ends

M repeat using a different

language

M examine the callback

procedure in the script

A moreflexible method of programming the default
pushbuttons on a dialog is through the use of call-
backs, which are pointersto procedures or functions
defined in the SML script. You can write a user-
defined function or procedure to be carried out by
the OK button and oneto be carried out by the Can-
cel button. You associ ate these procedureswith their
respective buttons by assigning them as attributes of
the dialog element inthe dialog specification. For a
modal dialog, the dialog element has OnOK and
OnCancel attributes; model essdialogs have OnOK,
OnApply, and OnClose attributes.

Thescript version for thisexerciseincludesaproce-
durecalled SayHello() to print “Hello” inthe selected
language. Thedialog specification assignsthispro-
cedure name to the OnOK attribute to map thiscode
tothe OK pushbutton. An OnCancel callback isnot
required inthisinstance, asthe script will automati-
cally exit after the Cancel button is pressed and the

proc SayHello ()

local class STRING language$;
language$ = dlg.GetCtrlvValueStr ("listbox");

if (language$ == "English") then

print ("Hello!");

else if (language$ == "French") then
print ("Bonjour!") ;
else if (language$ == "German") then
print ("Hallo!"); Language
else if (language$ == "Spanish") then French A
print ("Hola!") ; N
} Spanish F

DoModal() class
method returns.

= Conzole Mindow MmE
Hallo!

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">

<root>

<pane>

<groupbox Name="Language" ExtraBorder="4">
<listbox id="listbox" SelectStyle="single" Height="3"

<dialog id="hello" Title="Bonjour!" (OnOK="SayHello() ">

OK Cancel

Default="French">

page 22

Building Dialogs in SML

Using the Script Tag

The SML code executed by adialog’s callbacks can
reside in the main SML script (as in the previous
exercise) or withinthediaog specificationitself. The
script element in adialog specificationisdefined as
acontainer for SML code. Thisisamain-level ele-
ment within the root element of the XML text The
script element can include the code for one or more
callback procedures. Any global variables or func-
tions you define in the main SML script are also
available for use by the code in the dialog
specification’s script element.

Theexampleinthisexercise usesthe samediaog as
the preceding exercise. Theonly difference hereis
that the SayHello() procedureisin the script element
of the dial og specification (excerpted below).

<?xml version="1.0"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">
<root>

STEPS

M choose File / Open/
* SML File... and select
BONJOUR3sML from the
smLDLG directory

M run the script as you did
in the last exercise

Sanple Dialog Hindow

Language
French N
Gernan J
7

DK Cancel

<dialog id="hello" Title="Bonjour" OnOK="SayHello()">
[layout and control specifications omitted]

</dialog>
<script>

| beginning CDATA delimiter

proc SayHello () {
clear() ;
local string language$;

language$ = dlg.GetCtrlvValueStr ("listbox");

if (language$ == "English") then
print ("Hello!");

else if (language$ == "French") then
print ("Bonjour!") ;

else if (language$ == "German") then
print ("Hallo!");

else if (language$ == "Spanish") then

print ("Holal!™") ;

|ending CDATA delimiter

</script>
</root>

The SML code for your
callbacks might contain
characters (such as <, >,
and &) that have special
significance in XML syntax.
For this reason the SML
code should be enclosed
within CDATA delimiters as
shown. They tell the XML
parser that the enclosed
section should be treated
as regular text (“character
data”) that should not be
interpreted with XML
syntax rules.

page 23

Building Dialogs in SML

Getting Values from the Dialog

STEPS
M choose File / Open /

The previous three exercises used one of severa

* SML File... and select
GETDATA.sML from the
sMLDLG directory

run the script

in the TIGER Road
Options dialog, set the
Road processing options
and edit the Buffer
Distance field, then press
OK

note the dialog values
printed to the SML
Console Window
examine the script
examples of the four
methods of reading
values from the dialog
press [OK] on the TIGER
Road Options sample
dialog window to end the
script

HE

= TIGER Road Dptions
Road processing options:
M Extract Road Lines

® Hake Roads Buffer Zone

Buf fer Distance: I RO neters

1] 4 Cancel

available methodsfor getting control valuesand set-
tings from the dialog. The script for this exercise
shows al of these methods using the TIGER Road
Options dialog described on a previous page as an
example. When you pressthe OK pushbutton, apro-
cedureassigned to thedialog’s OnOK callback prints
the control value settings to the SML console win-
dow. Thesettingsareretrievedinfour different ways
that are described briefly bel ow.

Thefirst approach getsall of the dialog control set-
tings at once using the GetValues() class method in
classGUI_DLG (thedialog window class). Theval-
ues are returned as an instance of class
GUI_FORMDATA, whichyou must have previously
declared. You can then use GetVaueNum() and
GetValueStr() methodsin the latter classto read out
the stored values (asanumber or asastring, respec-
tively) as needed.

The second approach uses methods in class
GUI_DL Gto get thevaluefor each control fromthe
dialog individually using the control’'s id:
GetCtrlValueNum(id) and GetCtrlValueStr(id).

The third and fourth approaches use the
GetCtrIByID(id) method inclassGUI_DLGto
get ahandlefor each control, then aGetValug(),
GetSdlected(), or other similar method from
theindividual control classto get the control’s
setting. The control handle can be stored asa
control class instance that is then used to get

_|C1] x|

Dialog walues using GUI_F
Extract Road Lines togg
Extract Road Lines togg
Hake Roads Buffer toggl
Hake Roads Buffer toggl
Buffer distance value =

the setting, or the methods to get the control
handleanditsvaluecanbe
strung together, omitting

ORHDATA: A

le ¢numeric valued= 1 ||| the control handle class
le {string value}= true Variab|e(amore compact
e (nuneric valuel)= 1 .

e {string value} = true but perhaps less obvious
500 /| approach).

page 24

Building Dialogs in SML

Changing Control Settings in Callbacks

STEPS

You can also use callbacksfor individual controlsto
show the results of computations in the dialog and
to changethe status of other controls. The script for
thisexercise performsareaunit conversionsusing a
value you enter in an editnumber control and input
and output unitsyou select from combobox controls.
The output area is computed and shown in an
editnumber control when you pressthe[OK] button.
The output editnumber is set to be read-only, which
disables manual editing of the output value.

You can change control settings using class meth-
odsin either the dialog window’s class (an instance
of GUI_DLG) or theindividua control classes. The
OnOK callback function for this dialog window
[called Recalculate()] uses the method
SetCtrlValueNum(id) in class GUI_DL G to set the
value for the output area editnumber control. The
callback procedures for the input area editnumber
control and the two combobox
controls use the ClearValug()

)

HE

choose File / Open /

* SML File... and select
AREACALC.sML from the
smLDLG directory
examine the procedure
and function definitions
in the script

run the script

enter an area value in
the upper numeric field

M selectinput and output

area units from the
combobox controls

M press [OK] to compute

the output area

M when you are finished,

press [Cancel] to close
the dialog and exit the
script

method in class

|Enter area value:|348933480234.00 Isquare feet

=

Select output units:

GUI_CTRL_EDIT_NUMBER
to blank the editnumber control
when you change any of the

Area in selected units:

Ihectares

=]
3241698.11
ok | Cancell

other control settings.

In order to force the Area Unit Conversion window
to stay open after the OK buttonis pressed, the OnOK
callback for the dial og element isdefined in the script
as afunction that returnsthe value O (after its other
operationsare complete). Inorder to usethisreturn
value, the attribute assignment for the OnOK call-
back in the dialog specification must have the
keyword“return” precedingthe

The AREACALC script also
prints the output units, scale
factor for the units
conversion, and the output
area value to the Console
Window.

function name, asshowninthe
excerpt to theright.

<root>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">

<dialog id="areacalc"
Title="Area Unit Conversion"
OnOK="return Recalculate() ">

page 25

Building Dialogs in SML

Managing a Complex Dialog Window

STEPS

M choose File / Open /

* SML File... and select
PANSHARPCOMP.SML from
the smLbLG directory

run the script

in the Make Pan-
Sharpened Color
Composite window,
press [Red...]

M use the Select Object
dialog to navigate into
the sicrINE Project File in
the smLpLe directory and
select raster Banp_3
press [Green...] and
select raster Banp_2
press [Blue...] and select
raster sano_1

press [Pan...] and select
raster Bano_8

choose a Color Blending
Mode and a Composite
Type

press [OK] to name an
output color composite
raster and run the
process

M examine the script

HE

H B ®H H

=

=Hake Pan—Sharpened Color Conposite _[C1[%]

The script in this exercise provides an example of a
fully-functioning processing script that createsarela
tively complex custom dial og window to manageits
inputs. The script creates a pan-sharpened color-
compositeraster from three bands of amultispectral
image and a higher-resolution panchromatic
(grayscale) image, each of whichisselected using a
pushbutton. Read-only edittext controlsare used to
show the file and object names for each of the se-
lected input objects. The dialog provides
togglebuttons that allow you to apply a saved con-
trast table (if present) to each input raster, alistbox
to select from three color blending modes, and a
combobox to choose the bit-depth of the output color
composite.

The dialog specification for the Make Pan-Sharp-
ened Color Composite window is embedded in the
SML script. Thedialog controlsand their callbacks
are designed to lead the user through the controlsin
proper sequence. Only the Red... and Cancel but-
tons areintialy active. (The dialog specification
setsan Enabled attributeto O for the Green..., Blue...,
and Pan... pushbuttonsand for all of the Apply Con-
trast toggle buttons so that
these controls are initially

Select Input Rasters:

Red... |[BigPine.rvc / Band_3

W fipply contrast dimmed and disabled. An

Green...|[BigPine.rve / Band_2

¥ Apply contrast OnOpen callback for thedia-

Elue,.. ||BigPine.rvc / Band_1

® Apply contrast |Og W| ndOW d|SabIesthe OK

Pan... |[BigPine.rvc / Band_8

 fipply contrast button when thewindow first

HBS
Brovey

Color Blending Hode: Conposite Type: |24—hj_t,:|

opens.) TheOnPressed call-
back for the Red... pushbutton
enables its Apply Contrast
| Conemt] toggle button as well as the

Green... pushbutton. Pressing each successive in-
put raster button activatesthe next one, until pressing
the Pan button activatesthe dialog’s OK button.

page 26

Building Dialogs in SML

Suppressing Default Pushbuttons

Although dialog windows are supplied with action
pushbuttons by default, you may want to use your
own pushbuttons with more appropriate names in
their place. Thedialog element inthe dial og specifi-
cation has a Buttons attribute that can be used to
specify which of the default buttons to use on the
dialog. If youusethisattribute but assignit an empty
string (simply a pair of quota-

STEPS

M choose File / Open /
*.SML File... and select
AREACALCUNITS.SML from
the smLbLG directory

M examine the procedure
and function definitions
in the script

M run the script

tion marks as shown in the
specification excerpt), hone of
thedefault buttonsare supplied.
Inthisversion of the AreaUnit
Conversion script, Calculate

<root>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE root SYSTEM "smlforms.dtd">

<dialog id="areacalc"

Ti ="Area Unit Conversion"
Buttons="">

and Close buttons are used in
place of the default OK and
Cancdl buttons.

The input and output units

comboboxes are also auto-
matically populated with area

choicesin this script version,

rather than having menuitems

explictly listed in the dialog specification. The
GUI_CTRL_COMBOBOX class has an
AddUnitltems() method that allows you to specify
the type of unit to use (in this case, area units); the
combobox isthen automatically supplied with all of
theunit namesthat aredirectly supportedinthe TNT
products. This method must be called after the
comboboxes have been created by the
SetXMLNode() method onthedialog. To do so, the
script makes use of another dialog class method,
SetOnlnitDialog(). Thismethod letsyou identify a
procedureto be called when themodal dialogiscre-
ated but before it is opened by the DoModal()
method. In this example an OnlnitDialog() proce-
dure is used to get the control handles required in
the control callbacksand to add the areaitemsto the
two area unit comboboxes.

|Enter area value: |?89833340293.00 Isquare yards lli
Select output units: Isquare kiloneters >l
Area in selected units: Iw
Calculate I / Close I

/

/

The width of pushbuttons
relative to their text can be
controlled using the
HorizResize attribute of the
pushbutton element. If not
specified, this attribute
defaults to “Expand”, which
allows the button to fill the
available horizontal space in
the parent pane. If you
instead set this attribute to
“Fixed”, the button width will
be slightly larger than the
width of its text.

In addition to area units, you
can add standard lists of the
following types of units to a
combobox: length (distance),
plane angle, time,
temperature, volume, and
mass.

page 27

Building Dialogs in SML

Creating a View in a Dialog Window

STEPS A dialog window created by an SML script can dis-
B select File / Open / play input or output objectsin ageospatial view. The

*SML File and select ;
view.swi from the swore | SCript for thisexercise provides asimple example of

directory therequired steps.

M run the script using as) . ' . .
input the raster object A dial og specification cannot directly specify aview;
_8_mrfromthe cs_cowr | rather, it should create a layout pane (called
Project File in ce_pata “viewpane’ in this example) that will subsequently
sample data directory tain the vi An Onlnitdial ed

® press [Close] to close contain theview. An Onlnitdi og() proc ure.(s_ee
the window previous page) isthen used to set up theview within

e === thislayout pane. The sample codefor this

ROSRRATHOS 6 DO EE procedure is shown below. The procedure
creates a spatial group, adds the selected
raster object tothe group, and callsamethod
on class GRE_GROUPto create aview to
display the group. This method specifies
the parent of theview along withitshheight
and width in screen pixels. The parent of
theview must be an instance of classWID-
GET, the base class for the Motif dialog
componentsused in X Windows, which are
the hidden underpinnings of the GUI classes
inSML. Prior to creating theview, the pro-
cedure calls a method on class
GUI_LAYOUT _Paneto get awidget cor-
teee | responding to the paneto serve asthe parent
for theview. Another procedure called whenthedia
log opensisused to draw the view.

proc OnInitDialog ()

{

local class GUI_LAYOUT PANE viewpane; # layout pane to contain the view

local class widget viewpaneWidget; # widget for pane to serve as parent for the view
local class GRE GROUP viewgp: # group to be shown in the view

local class GRE_LAYER RASTER tempLayer; # raster layer in the group

viewpane = dlgview.GetPaneByID ("viewpane") ; # get handle for layout pane from dialog
viewpaneWidget = viewpane.GetWidget () ; # get Xm widget for pane

viewgp = GroupCreate(); # create display group

tempLayer = GroupQuickAddRasterVar (viewgp, Rast); # add the raster to the group

create 2D view of group in dialog

view = viewgp.CreateView(viewpaneWidget, "View", 400, 200, "NoDftMarkButtons,
NoStatusBar, NoLegend") ;

set white as background color for view

color.red = 100; color.green = 100; color.blue = 100;
view.BackgroundColor = color;
}

page 28

Building Dialogs in SML

A Complex Dialog with a View

The script for thisexercise presents amore compl ex
sampledial og that incorporates process controlsand
ageospatial view. The sample applicationisanin-
teractive “boxcar” classification of cellsin a set of
three image bands (raster objects). Numeric fields
areprovided for the user to enter minimum and maxi-
mum cell values for each input raster. When the
Process button is pressed, the script identifies cells
whosevaueseatsfall withinall of the specified ranges.
Default limit valuesareautomatically computed from
theraster statisticswhen theinput rasters are selected,
and an OnInitDialog() procedureisused to set these
default values before the dialog opens.

Theview inthediaoginitialy displaysatemporary
composite raster created from the three input ras-
ters. Each timethe Process button
ispressed, atemporary binary clas-

| = Boxcar Classification

RO$RRAAEG T OANKE

STEPS
M select File / Open /

*.SML File and select
BOXCAR3.sMmL from the
smLpLG directory

run the script, selecting
for input rasters reb,
GREEN, and BLue from the
ce_1mM Project File in the
cB_paTA directory

press [Process] on the
Boxcar Classification
window to run using the
default values

study the script to see
how the various window
components are
constructed and how
actions are controlled

M=

sification raster with color palette
is created and displayed over this
composite to portray the results of
the classification. Cellswith val-
ues within all of the specified
rangesare showninyellow inthe
classificationoverlay. A read-only
text field below the range controls
is used to show status messages.
The Clear button clears the previ-
ous clasification results, while the
Save button saves the temporary
classification raster to a Project
File.

In the dialog specification, the
ChildSpacing attribute is used for

the pane containing the
pushbuttons to set the spacing in
screen pixels between the
pushbuttons (the “children” of the
layout pane).

Hin. Red: 20 | [Hin, Green: 22 | [Hin. Blue: 65
Hax, Red: 164 | | Hax, Green: 117 | | Hax, Blue: 221
Red Low: |_51 Green Low: I 36 | |Blue Louw: I 91
Red High: l—n Green High: I 56 | |Blue Highy I 111

|Elass raster processed.

Process ‘ Clear | Save | Close |

page 29

Building Dialogs in SML

Dynamically Adding Dialog Components

STEPS
M choose File / Open /

* SML File... and select

DEVEG.sML from the smLbLG

directory

run the script

in the dialog window that
opens, press [select
NIR...], navigate into the
INyoT™ Project File in the
smLbLG directory, and
select Banp_4

M press [Select RED...]
and select Banp_3

M turn on the Devegetate
NIR and Devegetate
RED toggle buttons
type “3” into the “Number
of additional bands to
devegetate” field and
press <Enter>

press [Select Bands...]
select Banp_1, Banp_2,
and Banp_5

press [Set dark pixel
values...]

press [OK] in the Set
Dark Pixel Values
window that opens
press [Select Output
File...] and name a new
Project File to contain
the output objects

press [Directory...] and
select the directory in

HE

H H HE =

=

Thescriptinthisexerciseisdesigned to modify cell
valuesin aset of multispectral image bandsto sup-
pressthe contribution of vegetation. Most processing
parametersare set on themain dial og window (shown
below). However, each band to be processed must
also be corrected for additive brightness effects of
amospheric haze by subtracting a“dark pixel value’
(determined by the user) from each cell value. These
values are set using a second dialog opened by the
OnPressed callback procedure[SetDP()] for the Set
dark pixel values... pushbutton. The Set Dark Pixel
Values window lists the bands (filename and object
name) and provides an editnumber field showing a
default dark pixel value (the minimum cell valuefor
the raster). The tricky part is that the number and
selection of bandsto be processed can vary.

The SetDP() procedureincludesonly askeletal dia-
log specification with the dialog title, labels at the
top, and the groupbox with acontained paneto hold
all other controls. The procedure parsesthisskeletal
specification, then modifies the XML structure in
memory to add a series of horizontal panes, each
containing a text label and an editnumber control.
These changes are made using methods in class
XMLNODE: NewChild(), SetAttribute(), and
SetText(). The completed dialog isthen opened.

. e = Suppress Vegetation by Forced Invariance [_ 0[]
which TNTmips is
installed Select input near-infrared and red wavelength bands:
Select NIR...|[C:\tntdata\smldlg\InyoTH,rvc \ Band_d
™M press [OK] to start [E:\Entdata\onldlg\IngaTH.rve \ Ban
. Select RED,.,|[C:\tntdata\snldlg\InyoTH.rve \ Band_3
processing I
M Devegetate NIR M Devegetate RED
3 Humber of additional bands to devegetate Select Bands...
= Set Dark Pixel Values MEE C:\tntdata\snldlghIngoTH.rve \ Band_1
. . C:\tntdata\snldlg\InyoTH.rvc \ Band_2
Set Dark Pixel (Path Radiance) C:itntdatatsnldlghIngoTH.rve % Band_5
Correction Yalues: B ~_Set dark pinel values,,.|— Curve-fitting Paraneters:
TnyoTH.rve % Band_4 | 52 i fAverage initial nedians
InyoTH.rve \ Band_3 51 I Snooth Band vs YI curve
TInyoTH,rvc \ Band_1 67
InyoTH.rve Band_2 53 Select Output File...|[!PCIFs\test\InyoTHOUt .rve
InyoTH,rvc \ Band_5 44 Select directory in which THTnips is installed: Directory...
0K | Cancol _ 0| Cancel |

page 30

Building Dialogs in SML

Raster Intervals Script Dialogs

STEPS

The Raster Intervals samplescript creates several dia
log windowsincluding apreview of theresult, using
methodology introduced on the preceding several
pages. Thisscript categorizesagrayscaleraster into
the specified number of valueintervals using either
equal valuerange or equal cell count per interval.

The main dialog window provides the basic input
controls and is set up by a complete dialog specifi-
cation embedded in the script. Pressing the Run
button calls the setUplntervals() procedure in the
script, which computes the required intervals and
opensaDistribution window that showsthe numeri-
cal valuesfor theresulting rangeintervalsand allows
editing of the range boundaries. Since the number
of intervals can vary, the procedure includes only a
skeletal specification for this window. The XML
structurefor thisdialog ismodified on-the-fly by this
procedure (as described on the previous page) to pro-
vide the controls and valuelabelsfor each interval.

Pressing the Preview result... button on the Distri-

bution window calls the onPreview() script
procedure, which
creates and opens

OS2 HOyew @ANKE

|

K&

K&

choose File / Open /
*.SML File... , navigate to
the StanpALoNE directory
in the SML sample script
collection, and select
RASTERINTERVALS.SML

run the script

press [Input Raster...] on
the Raster Intervals
window

select raster bem from
the BicPINE Project File in
the smLpLc directory
press [Run...]

press [Preview result...]
on the Distribution
window

M press [Close] on the

Preview window

M press [OK] on the

Distribution window

M use the Select Object

aPreview window

dialog to name a new
Project File and output
raster object

press [Exit] on the
Raster Intervals window

that displays a

Select a grayscale integer raster for the input raster:

temporary raster
with values cat-

Input Raster...|[BigPine,rvc / DEH
Hunber of interwals {maxinun 20): l? Distribution: |Equal Range:l

egorized using the
current distribu-

Run... M

= Distribution

tion parameters. r Global Values: —‘
. Hininun: 1172 Haxinun: 2860 Range: 1689
The techniques —

Distribution Type: Equal Range (337.8)
used to createand (T [(Enn e Erme [rmsert (ke
populatethisview 1172 [1s0a 338 asoar 56.69 [

i 1510 [1847 338 18987 2474 [
were described on BT i —
pages 28.and 29. 2185 | 2szz 338 4700 612

2523 | 2s60 338 1745 2,27 [

Preview result,.. | OK

Cancel |

Close

f

page 31

Building Dialogs in SML

Using a Drawin

STEPS

M choose File / Open /

* SML File... , navigate
back to the smLbLG
directory and choose
DRAWDLG.SML

run the script

note the graphics and
text drawn in the dialog
window created by the
script

NN

Filled
rectangle
[FillRect()]

Filled circle
[FillCircle()]

= Dialog with Draving CarvacllmE]

' Drawing canvas

\
\ Circle [DrawCircle()]

Text (rotated)
[DrawTextSimple()]

M press [Close] on the

Dialog with Drawing

Canvas window

M examine the script and
its dialog specification

M choose File / Exit from
the SML Editor window

<?xml version="1.0"?>
<root>

g Canvas

In some instances you may want to design adialog
window that incorporatesagraph created from your
input dataor from the process output, or some other
graphic. Various types of graphics and text can be
drawn within a drawing canvas control in the dia-
log. To do so you use the canvas element, which
mapstothe GUI_ CANVASclassin SML, inthedia
log specification.

Thesimplemodal dial og created by the brawbLG.sML

samplescript illustratesthe use of adrawing canvas.

The dialog specification for this window is shown
at the bottom of the page. The canvaselement has
Height and Width attributes that you must use to
set the dimensions of the canvasin screen pixels.

The sample script draws a filled white rectangle,

filled red and open yellow circles, and vertical text

withinthe canvas. Placement of these elementsin

the canvasisreferenced to an X-Y coordinate sys-

tem with units of screen pixelsand an origin (0,0

position) at the upper left corner of the canvas.
Drawing within the canvas requires agraphics con-
text (class GC) that is created using the CreateGC()
method of the GUI_CANVASclass. The GC class
provides methodsfor drawing points, polylines, vari-
ous geometric shapes, and text, as well as methods
to set colors, fonts, and font sizes. The class meth-
odsused todraw thegraphicsinthisdialog are shown
intheillustration. Inthisscript the graphic elements
aredrawninan OnRedraw() procedurethat iscalled
within the dialog’s OnOpen callback.

<dialog id="target" Title="Dialog with Drawing Canvas" Buttons=""
OnOpen="0nOpenDlg () ">

<canvas id="canvas"

Height="150" Width="225"/>

<pushbutton id="closeBtn" Name=" Close " VertResize="Fixed"

HorizResize="Fixed"
</dialog>
</root>

HorizAlign="Right" OnPressed="OnClose()"/>

page 32

Building Dialogs in SML

Localizing a Script Dialog

A script dialog can be set up to automatically local -
ize the dialog text when the script is run under
different TNTmipslanguageinterfaces(locales). The
sample script for thisexerciseincludes English and
French localizations.

Setting the Resourcel_ookup attribute of the dialog
element to “true’ replaces any text element in the
dialog with its trandated text based on the current
language locale. Trandationsfor custom text must
be provided within the dialog
specification using string ele-

STEPS

M choose File / Open /
* SML File... and select
AREACALcLOC.sML from the
sMLDLG data directory

M examine the dialog
specification in the script

Dialog window when script
is run with TNTmips set to
use the English language
interface.

ments W|th| n st”ngs secuonS, ‘Enter area value: [789839340293,00 Isquare yards ;Ii

Wlth one %Ctlon for each Ian_ Select output units: Isquare kiloneters :I
guwe; an EI’T]pty Stl’lngS SeCtIOI’] Area in selected units: 660406, 28

Calculate

I Close I

is used to identify the origina

language of the dialog
text. Theid attributefor

= Conversion des umnités d aire

each Strl ng element IS |Porte une valeur d’aire: I 5849350250, 00 Inétres carrés :”

s‘ mply the OI’IgI nal text Choix d”unité nouvelle:
§r| ng. In th|s example L’aire dans les unités choisis:

Calculer

Ikilnnétres carrés |
I 5849,35

I Ferner |

translations are pro-

vided for six customtext strings (window title, labels,
and button names); the selections for the two stan-
dard areaunit menusareautomatically provided with
trand ations using the French language text resource

Dialog window when script is
run with TNTmips set to use
the French language
interface.

package provided with TNTmips. The apostrophe (single quote) is a special
character in XML. The predefined string
<?xml version="1.0" encoding="UTF-8"?> “'” is used to encode an apostrophe

<!DOCTYPE root SYSTEM "smlforms.dtd"> in a text string in XML.
<root>
<strings language="enu"> <!-- English -->
</strings>
<strings language="frc"> <!-- French -->
<string id="Area Unit Conversion">Conversion des unités d'aire
</string>

<string id="Enter area value:">Porte une valeur d'aire:</string>
<string id="Select output units:">Choix d'unité nouvelle:</string>
<string id="Area in selected units:">L'aire dans les unités choisis:
</string>
<string id=" Calculate "> Calculer </string>
<string id=" Close "> Fermer </string>
</strings>
<dialgog -id " Title="Area Unit Conversion" Buttons=""

ResourceLookup="true">

page 33

Building Dialogs in SML

Modeless Dialogs

STEPS

)

)

= Select Elenent

Active Layer: II]HVII]CIT‘I"

Select:
JClosest Point
i~ Closest Line

.JEnclosing Polygon

choose Main / Display
from the TNTmips menu
press the Open
Display icon
button on the
Display Manager,
navigate to the smL
sample data folder, and
choose TooLGroup from
the TooLs Project File
press the Select
Element tool h
script icon button

on the View window
toolbar

on the Select Element
window that appears,
use the radio buttons to
choose which type of
element to select

Cr |

MmE3

0K | Closel prlgl

H 8 ®H H

left-click in the View to
select an element

close the Select Element
window

choose Options / Scripts
/ Tool Scripts in the View
in the Customize Tool
Scripts window, click on
the Select Element entry
in the list and press the
Edit icon button to open
the SML window to show
the tool script

close the SML window
and Customize Tool
Scripts window when you
have finished examining
the script

Tool scripts and display control scripts are special-
ized scriptsthat are activated from within astandard
View window and allow continued interaction with
databeing displayed. These scriptsareevent-driven:
they consist primarily of prenamed procedures that
are called by eventsin the display window (such as
left or right mouse click). If such ascript requiresa
custom dial og window, the open dialog must not in-
terfere with the processing associated with these
various events. Modeless dialogs are therefore the
appropriate choice for these types of scripts. The
tool script in this exercise providesamodeless dia-
log that isused to choose what type of element (point,
line, or polygon) will be selected by aleft-click ac-
tion in the View.

A modelessdial og can be set up with adial og speci-
fication just like a modal dialog, but different
GUI_DLG class methods are then used to initialize
and control the window. A modal dialog is created
and opened in one step using the DoModal()
GUI_DLG class method, but for modeless dialogs
these stepsare separate. A CreateM odel ess() method
is used to create (initialize) the dialog, and Open()
and Close() methods are used to open and close it
when needed.

Tool scripts are explicitly activated by pressing the
script’sicon button on the View window’s tool bar
and are deactivated by selecting another tool (such
as the Recenter or Zoom tool). The Onlnitialize()
prenamed procedureiscalled automatically thefirst
timethetool isactivated; thisisthe appropriate place
to process the dialog specification and create the
modelessdialog. Thedialog should beopenedwithin
theOnActivate() procedure, whichiscalled eachtime
the tool is activated, and closed within the
OnDeactivate() procedure, whichiscalled when an-
other tool is selected.

page 34

Building Dialogs in SML

Using a Canvas with a Modeless Dialog

The Raster Profiletool script providesalinetool for
drawing aline in the View and a modeless Raster
Profile window that shows agraph of cell value (el-
evation in meters in this example) versus distance
along the profileline. The profileisrecreated and
redrawn whenever the profilelineis changed or re-
drawn in the View (the callback for the line toal,
cbTool Apply(), also callsthe cbRedraw() procedure
that handles drawing the graphics).

The graphics context for a drawing canvas in a
model ess dialog window isautomatically destroyed
whenever thewindow closesand even whenthewin-
dow losesfocus (by making another window active).
For these reasons the graphics context for the can-
vas must be recreated each time the canvas is
redrawn. Thusyou will find the statement
gc = canvas.CreateGC()
near the beginning of the cbRedraw() procedure in
this sampl e script.
= DEM_GRN — View 1 [x]

Yiew Tools GPS Options HotKeys

ROSROQAEOBT oW | % wrd OAKEEL

=Raster Profile _IC[x]

Raster: BigPine DEM
2828

1620
13, 293 64, 108
Height/width of averaging area (cells} |3 =|

Tine to drau; 0,129]+305250 E 4089140 H n 1365524

STEPS
M press the Open Ce |
. P =

Display icon

button on the Display
Manager, navigate to the
sMLbLG Sample data
folder, and choose
DEM_GRouP from the Bic
PINE Project File

press the Raster

Profile tool script L"',.:
icon button on the

View window toolbar
left-click and drag to
draw a profile line in the
View; note the resulting
profile graphic in the
Raster Profile window

M choose Options / Scripts

/ Tool Scripts in the View

M in the Customize Tool

Scripts window, click on
the Raster Profile entry
in the list and press the
Edit icon button to open
the SML window to show
the tool script

M examine the cbRedraw()

procedure in the script

M choose Display / Exit/

from the Display
Manager

page 35

Advanced Software for Geospatial Analysis

M icrol-maga Inc. publishes a complete line of. professional ‘software for advanced 'geospéti'al
datavisualization, analysis, and publishing. Contact usor visit our web site for detailed product
information.

TNTmipsPro TNTmips Pro isaprofessional system for fully.integrated GIS; image
analysis, CAD, TIN, desktop cartography, and geospatial database management.

TNTmips Basic TNTmipsBasic is alow-cost version of TNTmips for small projects.

TNTmips Free TNTmips Freeis afree version of TNTmips for students and learning
professionals with small projects.

TNTedit TNTedit providesinteractive toolsto create; georeference, and edit vector, image,
CAD, TIN, and relational database project materials in awide variety of formats.

TNTview TNTview has the same powerful display features as TNTmips and is perfect for:
those who do not need the technical processing and preparation features of TNTmips.

TNTatlas TNTatlas lets you publish and distribute your spatial project materials on CD or
DVD at low cost. TNTatlas CDS/DVDs can be used on any popular computing platform. .

Index
ﬂook element.......cccccvvevvieeviiieiiienn 14 PAGE.

callback ..
CANVAS. . eivieiiireiteaeeieineannns

colorbutton

combobox.............. pushbutton
control settings radiogroup
dialog element.........ccoveeevreririernnen. Read(xmlfile$)..
editnumber............ccoooiiin root element........
edittext.....cooviiiiii script element..

groupbox........ togglebutton...

id attribute.. VIeW. .o

i WiIdget..coveieiiiii e
XML

layout component.............cccveereeeererene. 9,10 attributes..........coocoi

(1151070 SR 11,26 editors.....cooviviiiiii

menubutton...........co.ceeeeiiieiee. 8,12 elements....

modal dia- errors.........

Reference Guide to SML Dialog Specifications in XML

This document is a reference to the creation of custom SML dialog window specifications in XML format. A dialog
specification is a simple text file (or text character string embedded in the SML script) that conforms to the basic
format and syntax rules of the Extensible Markup Language (XML). The XML text consists of a set of predefined
XML tags and attributes (described in this document) in a nested, hierarchical structure that mirrors the grouping of
components in the dialog window. In comparison to the previously-available X-Motif class structures in SML for
custom dialogs, XML specifications provide a simpler, more highly-structured approach to constructing custom
SML dialogs, as well as streamlined methods for accessing information input via the dialog. Custom dialog
windows created using an XML specification can be used in either SML for X or SML for Windows. Dialogs
created using the X-Motif classes can be used only in SML for X.

About XML

XML is a markup meta-language that is designed to allow the creation of structured, self-describing text. XML
makes use of tags (enclosed between < and > characters) to delimit and identify pieces (elements) of text data. In
an SML dialog specification, the data elements identified by the tags correspond to specific components of a dialog
window, such as buttons and labels. Delimiting tags occur as a pair, a start tag and end tag, that enclose the relevant
text. The start and end tag use the same tag name, but in the end tag the name is preceded by the forward slash “/”
character. For example, here is the entry for a text label in an SML dialog specification in XML.:

<label>Select Composite Type:</label>
In this case the <label> tags bracket the text to be used for the label on the dialog.

Data elements in XML can be nested inside other data elements to indicate membership in a group. There may be
multiple levels of membership, forming a hierarchical or tree-like data model. This model is well suited to describe
a dialog window, because many dialog elements, such as panes, list boxes, and menu buttons, act as “containers”
that have other elements as their “contents”. (Another way of stating this is that the container element is the
“parent” and the contained elements are the “children”). In a dialog specification in XML the contained elements
are nested inside the tag pair for the container element. For example, the excerpt below shows the specification for a
layout pane that includes two text labels sandwiched around a humeric entry control:

<pane Orientation="horizontal">
<labels>Buffer Distance:</label>
<editnumber id="buffdist" Width="4" Precision="0" Default="100" MinVal="0"/>
<labels>meters</label>

</pane>

For ease of editing and reading the dialog specification, the start and end tags for a parent element should be placed
on separate lines in the text, with the contained elements identified on the intervening lines. You should also indent
lines corresponding to child elements by an equal amount relative to their parent element tags.

Start tags can also include attributes. A specific, predefined set of attributes are available for each type of dialog
element in an SML dialog specification. You use these attributes to define the individual characteristics and settings
for each dialog element, to provide a control handle for the SML script to use to access the control, and to specify a
callback procedure associated with a control (if needed). To use an attribute within an element tag, you list the
attribute name and assign it a value (in double quotation marks) using an equals sign (=). In the specification
excerpt immediately above, the layout pane has an attribute called Orientation that has been assigned the value
horizontal. Attribute names and predefined nonnumeric values are case-sensitive.

Some dialog elements can be completely specified using the tag name and a list of start-tag attributes. There is no
other “text” associated with the element to be bracketed by separate start and end tags. In this case the two tags are
combined into a so-called empty tag. In an empty tag the forward slash character (/) normally used to begin an end
tag is placed just before the final character (>) of the tag. The edithumber tag in the specification excerpt
immediately above is an example of an empty tag.

© 2003 - 2007 Microlmages, Inc. www.microimages.com

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

In order for SML to correctly parse and interpret a document specification, the specification must follow some
simple syntax rules that define a well-formed XML document:

1) An element containing text or other elements must have both start and end tags.

2) An empty element tag must have a forward slash (/) before the ending bracket

3) All attribute values must be in quotes.

4) Elements may not overlap.

In general uses of XML, the meanings of tags and attributes are specified in a document type definition (DTD),
which can be either contained in the XML file or referenced by it, or alternatively in an external XML Schema.
However, the XML text describing an SML dialog does not need to reference a DTD or Schema, because the tag
and attribute meanings are processed by the SML parser.

To conform to XML standards, the dialog specification should begin with an XML Declaration containing the
version of XML:

<?xml version="1.0"?>.
For further information about XML, please consult the following:
Learning XML, by Erik T. Ray. O’Reilly & Associates, Sebastopol, CA, 2001. 354 pages.
Mastering XML, by Ann Navarro, Chuck White, and Linda Burman. SYBEX, San Francisco, CA, 2000, 882 pages.

XML Handbook, by Charles F. Goldfarb and Paul Prescod. Prentice-Hall PTR, Upper Saddle River, NJ, 4™ Ed.,
2002, 1147 pages.

www.w3.org/XML/: XML web site maintained by the World Wide Web Consortium (W3C), the organization that
formulates and publishes XML standards. Includes technical specifications and links to other web resources on
XML, including tutorials and books.

www.xml.org: Industry web portal on XML maintained by OASIS, the nonprofit Organization for the Advancement
of Structured Information Systems. Includes sections on XML basics.

xml.coverpages.org/xml.html: XML section of Cover Pages, maintained by Robin Cover and hosted by OASIS.

www.xml.com: XML site by O'Reilly & Associates.

2 © 2003-2007 Microlmages, Inc. Wwww.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

Overview of Tag Set and Classes for SML Dialog Specifications

A dialog created using an XML dialog specification makes use of a set of Graphical User Interface (GUI) classes in
SML. Most of the XML tag types in a dialog specification correspond to specific GUI classes. In essence, the XML
specification provides a shorthand way to set up and access the various class structures that underlie a custom dialog
window. The following is a list of the available dialog elements with their tag name and corresponding GUI class.

Each element type is documented fully in subsequent sections of this document.

Tag Description Class
Main Elements

<root> root element of the document None
<dialog> dialog window GUI_DLG
<scripts> container for an SML script None
<strings> container for list of text resource strings None
<strings> a single text resource string None

Layout Elements
<book> book of tabbed pages GUI_LAYOUT_BOOK
<page> tabbed page in a book GUI_LAYOUT_PAGE
<pane> window layout pane GUI_LAYOUT_PANE
<groupbox> frame around other controls GUI_CTRL_GROUPBOX

Control Elements
<labels simple text label GUI_CTRL_LABEL
<pushbutton> push button with text or icon GUI_CTRL_PUSHBUTTON
<togglebutton> independent toggle button GUI_CTRL_TOGGLEBUTTON
<colorbuttons> color selection button GUI_CTRL_COLORBUTTON
<edittexts> text entry control GUI_CTRL_EDIT_STRING
<editnumbers> numeric entry control GUI_CTRL_EDIT_NUMBER
<radiogroup> group of radio (mutually exclusive) buttons GUI_FORM_RADIOGROUP
<combobox > combobox menu GUI_CTRL_COMBOBOX
<menubutton> button with drop-down menu GUI_CTRL_MENUBUTTON
<listbox> scrolled list for selection GUI_CTRL_LISTBOX
<items> item in a list, menu, combobox, or radiogroup None
<canvas> drawing canvas in a dialog GUI_CANVAS

In addition to the classes listed above, two other SML classes provide methods to interact with dialog specifications

in XML:

class XMLDOC: an XML document. Methods in this class are used to read and parse the XML text.

class XMLNODE: an element (node) in an XML document. Methods in this class allow the script to access the
XML elements that correspond to particular components of the dialog, including the node for the dialog window

itself.

© 2003 Microlmages, Inc.

WwWw.microimages.com

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

Callbacks

All dialog elements that represent actual controls can have callback attributes. The attribute is named in such a way
as to indicate the type of action happening, like OnClicked, or OnValueChanged.

The value of a callback attribute is a small fragment of SML code, usually a call to a function or procedure defined
in the main SML script or in the dialog specification within a <script> element. If the value used for a callback
attribute is a call to a function or procedure, include the full procedure name (including parentheses) as the callback
value in the dialog specification, as for the OnOK attribute in the following example:

<dialog id="tigerops" title="Extraction options" OnOK="CheckTogs () ">

All callbacks can return a numeric value and return 1 by default. Some callbacks, like OnOK for dialogs can
prevent the default action by returning 0 instead. If the returned value is required for use in the main script, the
value for the callback should be a statement with the keyword "return” followed by the name of the associated user-
defined function, as in the following example:

<dialog id="tigerops" title="Extraction options" OnOK="return CheckTogs() ">

The SML code within a <script> element can consist of one or more callback procedures for individual dialog
controls, including the dialog's OK and Cancel buttons. In some cases the code within the <script> tag could carry
out most of the intended data processing. However, a separate SML script is required to read in the dialog
specification file and open the dialog window described in the specification.

Within the SML code in a <script> element, the following conditions apply:

O Global variables and functions defined in the main SML script are available within the <script> element
code.

Q The default MDLGPARENT for the SMLCONTEXT is set to the LAYOUT_PANE containing the control
so that any dialogs popped up while within the callback will automatically appear over the dialog, not
somewhere else.

O The variable this is predefined to be the control causing the event. The variable corresponds to a class
variable of one of the classes derived from GUI_CTRL. The control will already reflect the changes made,
so if the event is a toggle button being toggled, this.cetvalue () will return true if the button was
toggled on and false if it was toggled off. To use the variable, you need to do two things: (1) the value you
assign for the callback attribute should include this as a parameter of the procedure or function; (2) in the
definition of the procedure or function, declare this as an instance of the relevant GUI_CTRL class. The
excerpt below illustrates this structure for a listbox control whose OnChangeSelection callback calls a
procedure called SayHello().

<root>
<dialog id="hello" Title="Bonjour!"

<listbox id="listbox" SelectStyle="single" Height="3" Default="French"
OnChangeSelection="SayHello(this) ">

<\dialog>
<scripts>
<! [CDATA [
proc SayHello (class GUI_CTRL_LISTBOX this) {
local string $language;
language$ = this.GetSelectedItemID() ;

}
11>
</scripts>
</root>

4 © 2003-2007 Microlmages, Inc. Wwww.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

Example Dialog Specification in XML

This dialog specification describes a dialog window with three tabbed panels that include various types of controls.

=This is a test _|07]x] =This is a test (w3 EThis iz a test _[C]x]
Pagel |Edit. I Radiogroup | Pagel Edit |Radiogroup I Pagel | Edit Radiogroup |
This is some text in a label First Nane:IFred Thiz is a groupbox

+ If it’s not one thing

Ignore This |

Last Mane: I

“ it's another

IIf it"z not one thing 1'

il - This is a togglebutton

0K I [:ance_ll 0K I Eancell 0K I Eancell

Password: I

<?xml version="1.0"?>
<root>
<dialog id="test" title="This is a test" Orientation="vertical" OnOK="GetDlgValues () ">
<book>
<page Name="Pagel'>
<label>This is some text in a label</label>
<pushbutton Name="Ignore This" OnPressed="TestFunc2();"/>
<combobox id="combo">
<item Value="iteml">If it's not one thing</item>
<item Value="item2">it's another</item>
</combobox>
<pane Orientation="horizontal">
<pushbutton Name="Test" Icon="CHECKBOX BLACK" ToolTip="Check This!"/>
<togglebutton id="tbutton" Name="This is a togglebutton"/>
</pane>
</page>
<page Name="Edit">
<pane Orientation="horizontal">
<label WidthGroup="1">First Name:</label>
<edittext id="fname" width="20"/>
</pane>
<pane Orientation="horizontal">
<label WidthGroup="1">Last Name:</label>
<edittext id="1lname" width="20"/>
</pane>
<pane Orientation="horizontal"s>
<label WidthGroup="1">Password:</labels>
<edittext id="password" Opaque="true" width="20"/>
</pane>
</page>
<page Name="Radiogroup"s>
<groupbox Name="This is a groupbox">
<radiogroup id="radiogroup">
<item Value="buttonl" Name="If it's not one thing"/>
<item Value="button2" Name="it's another"/>
</radiogroup>
</groupbox>
</page>
</book>
</dialog>
<script language="SML">
<! [CDATA[
func TestFunc2 ()
PopupMessage ("I said to ignore this!");
return (0);

11>
</script>
</root>

© 2003 Microlmages, Inc. Wwww.microimages.com 5

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

Common Dialog Element Attributes

This is a list of attributes that are common to many of the dialog elements. They are documented here to avoid
redundancy. In the succeeding documentation of individual elements, the attributes unique to that element are
documented in full, but the available common attributes are merely listed for each element.

id — All elements can have an id attribute. The value of an id attribute can be any string, but must be unique within
a given XML document. You are not allowed to have two tags with the same id. This attribute allows you to
gain access to the dialog elements within SML to retrieve or set their values or state. You don’t have to
assign ids to elements that you don’t need to read or change, such as labels and icons.

Orientation — Either “horizontal” or “vertical”. The default is the opposite of the parent’s orientation or vertical
for the main form. All children of the form are laid out from left to right or top to bottom. To make more
complex layouts, nest <panes> with alternating orientations.

HorizAlign — Controls how the control is aligned horizontally in the available space. Possible values are “Left”
(the default), “Right” and “Center”.

VertAlign — Controls how the control is aligned vertically in the available space. Possible values are “Top” (the
default), “Bottom” and “Center”.

HorizResize — Controls how the control behaves when the parent is resized. Possible values are:
“Expand” — Expands horizontally to fill the available space.
“Fixed” — Width stays the same.
“Relative” — Expands horizontally, keeping the same percentage of space as it had before.

VertResize — Controls how the control behaves when the parent is resized. Possible values are:
“Expand” — Expands vertically to fill the available space.
“Fixed” — Height stays the same.
“Relative” — Expands vertically, keeping the same percentage of space as it had before.

Childspacing — Space between children. The default value is 4.
ExtraBorder — Extra border around inside of pane, in addition to ChildSpacing. The default value is 0.

widthGroup - If specified, all controls with the same WidthGroup value will be adjusted to be as wide as the
widest control in the group.

ResourceLookup — Either “true” or “false”. If “false”, the string is used as-is. If “true”, any string shown on the
dialog for the element (such as a label or dialog name) is replaced with a translated text resource version (if
found) based on the language locale currently set for the TNT products. Translated versions of the strings
used in the dialog must be provided within the dialog specification using <string> elements within one or
more <strings> sections at the beginning of the dialog specification (one section for each language). The id
for each translated string element should be set to the string actually used in the dialog specification. The
specification must also include an empty <strings> section identifying the language in which the strings are
initially set for the elements. If no translated resource is found, the original string in the dialog specification
is used as-is. The default value for this attribute is inherited from the parent, except for <form> and
<dialog>, which default to “true”.

Enabled - Either “true” or “false”. If “true” (the default), the control is enabled. If “false”, it’s initially disabled
and grayed out. The control stays this way unless changed via SML script or C++ code.

NOTE. Any attribute that has “true” and “false” as valid values also accepts “yes” and “no” or “1” and “0".

6 © 2003-2007 Microlmages, Inc. Wwww.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

Dialog (Form) Elements

Main Elements

<root>

Description: The required root element of the document. All elements described subsequently must be contained
within <root> or one of its children.

Valid inside: nothing

Valid children: <script>, <strings>, <dialog>
Attributes: none

SML Class: none

<dialog>

Description: A dialog window.

A dialog can be modal or non-modal, but that is up to the SML code that opens the dialog, not the XML
specification. A modal dialog is one that takes control and won’t let the program do anything else until the dialog
closes. Modal dialogs are automatically provided with “OK” and “Cancel” buttons. If there is a HelplD attribute in
the XML specification of the dialog, it will also have a “Help” button. Non-modal dialogs permit program
operations and user interactions to continue while they’re open. In this case, an “Apply” button is provided along
with the “OK” and “Cancel” buttons.

Valid inside: <root>
Valid children: Any layout element except <page>; any control element except <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, ResourcelLookup, Orientation

OnApply — SML Code to execute when user presses the “Apply” button.

OnOK — SML code to execute when user presses the “OK” button. After your OnOK callback is called, the
dialog will be closed. You can prevent it from closing by having your callback return 0.

OnCancel — SML code to execute when the user presses the “Cancel” button. After your OnCancel
callback is called, the dialog will be closed. You can prevent it from closing by having your
callback return 0.

OnOpen — SML code to execute when the dialog opens.

OnClose — SML code to execute when the dialog closes. After your OnClose callback is called, the
dialog will be closed. You can prevent it from closing by having your callback return 0.

onCloseRequest — SML Code to execute when the dialog receives a request to close. A return value of
0 prevents the dialog from closing.

Title — The title of the dialog.

HelpID - A Kkey into tnthelp.txt. If set, the dialog gets a “help” button that opens a help window.

Buttons — The buttons to create. Use to specify which of the default buttons are provided. If the value is
an empty string (“”), none of the default buttons are provided.

SML Class: GUI_DLG

© 2003 Microlmages, Inc. WwWw.microimages.com 7

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

<script>

Description: Container for an SML script. An SML script can be enclosed in an XML wrapper. If the file has a
.sml extension but an XML header, the SML parser will look for a script tag and run that. The rest of the XML
document will be parsed and accessible to the script.

Note that the contents of the script tag must start with <! [CDATA [and end with 11 >. Without this, you would
have to escape every ampersand (&), greater-than (>), less-than (<) and both single and double quotes.

Valid inside: <root >
Valid children: Only a CDATA containing SML code

Attributes:
id - Unique identifier for the script (not usually necessary)
language — TNTmips only recognizes “SML”, which is the default. Include this attribute to ensure that
other XML viewers don’t try to interpret the CDATA as some other language such as Javascript.
Usage — One of the following values specifying the type of script:
“standalone”
“style-point”, “style-line”, “style-poly”
“select-point”, “select-line”, “select-poly”
“geoformula”, “macroscript”, “toolscript”
StrictSyntax — either “true” or “false”. If “true” (the default) the parser enforces stricter syntax rules

(requires semicolons at the end of lines, predeclared variables, etc.).
SML Class: none
<strings>
Description: Container for string elements that provide dialog text resources for a particular language.
Valid inside: <root>
Valid children: <string>
Attributes:

id — Unique identifier for the string section (not usually necessary)
language — The three-letter abbreviation of the language locale. Possible values are:

“are”— Arabic “fin” — Finnish “plk” — Polish
“bah”- Indonesian “frc” -~ French “ptg” — Portugese
“ben”- Bengali “hrv’ - Croatian “rom” — Romanian
“bgr’— Bulgarian “hun” — Hungarian “rus”— Russian
“bos” - Bosnian “ita” — Italian “shc” - Serbian
“chs” — Chinese “jpn” — Japanese “sky” — Slovakian
“deu” - German “kor” - Korean “tgl” — Tagalog
“ell” — Greek “mys” — Malaysian “tha” — Thai
“enu” — English “nld” - Dutch “trk” — Turkish
“esn” — Spanish “nor” — Norwegian “urd”— Urdu

SML Class: none

<string>

8 © 2003-2007 Microlmages, Inc. Wwww.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

Description: A string that specifies a dialog text resource for a particular language.
Valid inside: <strings>
Valid children: text

Attributes:
id - Unique identifier for the string (same as text in the specification for the element that uses the
resource).

SML Class: none

Layout Elements
<pane>

Description: A layout pane
Valid inside: <dialog>, <page>, <pane>, <groupbox>
Valid children: Any layout element except <page>; any control element except <item>
Attributes:
id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, ResourceLookup
Orientation — Either “horizontal” or “vertical” (default is the opposite of the parent pane). All children

of the form will be laid out from left to right or top to bottom. For more complex layouts, nest
<pane>$ with alternating orientations.

SML Class: GUI_LAYOUT PANE

<page>
Description: A tabbed page in a <book>
Valid inside: <book>

Valid children: Any layout element except <page>; any control element except <item>

Attributes:
id, Orientation, ResourceLookup
Name — the label on the page’s tab
OnSetActive — SML code to execute when the page is activated

SML Class: GUI_ LAYOUT PAGE

© 2003 Microlmages, Inc. WwWw.microimages.com 9

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

<book>
Description: book of tabbed pages
Valid inside: <dialog>, <page>, <pane>, <groupbox:>
Valid children: <page>
Attributes:
id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,

ExtraBorder, ResourceLookup

SML Class: GUI_LAYOUT BOOK

<groupbox>
Description: A frame around other controls
Valid inside: <dialog>, <page>, <pane>, <groupboxs>
Valid children: Any layout element except <page>; any control element except <item>
Attributes:
id, HorizAlign, VertAlign, HorizResize, VertResize, ChildSpacing,
ExtraBorder, Orientation, ResourceLookup, Enabled

Name — the label on the upper left edge of the box (optional)

SML Class: GUI_CTRL_GROUPBOX

Control Elements

<label>

Description: A simple text label

Valid inside: any layout element except <book>
Valid children: text

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, ResourceLookup,
WidthGroup, Enabled

TextAlign — How to align the text of the label. Possible options are:
“LeftNoWrap” — Left justify without word wrapping
“Left” — Left justify, MFC may word-wrap if too long, but X won’t
“Center” — Center, MFC may word-wrap if too long, but X won’t
“Right” — Right justify, MFC may word-wrap if too long, but X won’t

SML Class: GUI_CTRL LABEL

10 © 2003-2007 Microlmages, Inc. Www.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

<pushbutton>

Description: A push button with either text or icon.
Valid inside: any layout element except <book >
Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Name — the text to be placed on the button.

Icon — lcon to display based on ICONID values. For example, to use ICONID_CREATE_FILE, use the
string “CREATE_FILE”. Possible values are those listed for the “iconid” parameter of the
Createlcon() method of class GUI_CTRL_BUSHBUTTON.

ToolTip — ToolTip text to display for the button (only if it has an icon)

OnPressed — SML code to execute to call when the button is pressed. See section on callbacks for

details.

SML Class: GUI_CTRL_PUSHBUTTON

<togglebutton>
Description: A toggle button.

Valid inside: any layout element except <book >

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
Resourcelookup, Enabled

Name — the label to be placed next to the button

Icon — lcon to display. Based on ICONID values. For example, to use ICONID_CREATE_FILE, use
the string “CREATE_FILE”. You can get a full list of valid Icon IDs by looking at the
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML.

ToolTip — tooltip text to display for the button (only if it has an icon)

Type — “check” or “radio”. Radio buttons are round. A check box is square. The default is “check”. Note
that radio behavior is not automatic. If you want automatic radio behavior, create a
<radiogroup> with an <items> for each radio button.

Selected - Either “true” or “false”. If true, the button is initially selected. This can be overridden
through commands in the SML script.

onChanged — SML code to execute when the button’s state changes (when the user toggles the button
on or off). For radio buttons, an OnChanged callback is also triggered for the button that is being
toggled off. See section on callbacks for details.

Note: to create mutually exclusive radio buttons, create a <radiogroup> with <items>s instead of
<togglebuttons>S

SML Class: GUI_CTRL_ TOGGLEBUTTON

<colorbutton>

Description: A color selection button.

© 2003 Microlmages, Inc. WwWw.microimages.com 11

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

The button has no text, but the body of the button will show the selected color. Pushing the button pops up a color
selection dialog.

Valid inside: any layout element except <book>
Valid children: none

Attributes:
id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup, Enabled

ReadOnly - Either “true” or “false”. If true, the button shows a color but the user cannot change it. The
default is “false”

AllowTransparent — Either “true” or “false”. If true, the color selection dialog will allow
transparency settings. The default is “false”.

OnChangeColor — SML code to execute to call when color is changed. See section on callbacks for
details.

SML Class: GUI_CTRL_ COLORBUTTON

<edittext>

Description: A text entry control.

The control has no built-in text label.

Valid inside: any layout element except <book >
Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

onChanged — SML code to execute when the value is edited.

Width — Width of the text control in “typical” characters.

MaxLength — Maximum length of text to allow.

Justify - Textalignment. Either “left” or “right”. The default is “left”.

OnActivate — SML code to execute when the user presses <Enter> with the cursor in the edit control.

ReadOnly — Either “true” or “false”. If “true”, the user cannot change the value, but the control does not
look disabled. The default is “false”.

Opagque — Either “true” or “false”. If “true”, the control shows “*” for password input. Default is “false”.

SML Class: GUI_CTRL_EDIT STRING

12 © 2003-2007 Microlmages, Inc. WWW.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

<editnumber>

Description: A numeric entry control.

The control has no built-in text label.

Valid inside: any layout element except <book >
Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourcelLookup, Enabled

OonChanged — SML code to execute when the value is edited.

Width — Width of the text control in “typical” characters.

MaxLength — Maximum length of text to allow.

Justify — Text justification. Either “left” or “right”. The default is “right”.

OnActivate — SML code to execute when the user presses <Enter> in the edit control.

ReadOnly - Either “true” or “false”. If “true”, the user cannot change the value, but the control does not
look disabled. The default is “false”

Default — The default value (optional)

MinVal — Minimum allowed value. Default is no minimum.

MaxVal — Maximum allowed value. Default is no maximum.

Addone — Either “true” or “false”. If “true”, the value shown in the control is always one more than the
actual data value. Default is “false”.

BlankZero — Either “true” or “false”. If “true”, blank the field if the value is 0.0. The default is “false”.
Note, the IEEE NaN value will always cause the control to show blank.

Format — One of the following:
“Decimal” — Normal decimal format (default)
“Exponential” — Show in scientific notation.
“Latitude” — A latitude value. Actual prompt value is decimal degrees.
“Longitude” — A longitude value. Actual prompt value is decimal degrees.
“DegMinSec” — An angle in Degrees, Minutes and Seconds. Actual prompt value is decimal
degrees.

Precision — Number of digits after the decimal place (Default is 6)

SML Class: GUI_CTRL_EDIT NUMBER

<item>

Description: An item in a listbox, combobox, menubutton, or radio group.

Valid inside: <combobox>, <listbox>, <menubutton>, <radiogroup>
Valid children: text

Attributes:

ResourceLookup
Name — The button label for a radiogroup button or the item's menu entry for the other parent controls.

Value — The value of this item. This is the value that is returned when calling GetValue() on the parent
object if this item is selected. If omitted, the default value is the item’s index, starting at 1.

© 2003 Microlmages, Inc. WwWw.microimages.com 13

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

Selected — Either “true” or “false”. If true, the item is selected by default. This overrides the
Default attribute of the parent. Default is false. If more than one item is marked as selected,
the last one marked is the one selected unless the parent is a multi-select list.

Icon—Anicon ID (only valid if the <item> is inside a <radiogroups>).

SML Class: none

<radiogroup>

Description: A group of radio buttons (mutually exclusive).
Valid inside: any layout element except <book >
Valid children: <item>

Attributes:
id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
Orientation, ResourcelLookup, Enabled
Default — The vValue of the button that is to be on by default. This can be overridden by setting the
Selected attribute of one of the items in the group
OnSelection — SML code to execute when the selected button changes.

SML Class: GUI_FORM RADIOGROUP

<combobox>

Description: A combo-box.

Valid inside: any layout element except <book>
Valid children: <item>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourcelLookup, Enabled

Default — The value of the item that is to be selected by default. This can be overridden by setting
the Selected attribute of one of the items in the combobox.

OnSelection — SML code to execute when the selected item changes.

Wwidth — Width of the control in “typical” characters. The default is to base the width on the width of the
widest item in the list.

Height — The maximum number of items to show when the list is opened. Defaultis 7. If there are more
items than that, the list has a scrollbar.

Sort — Either “true” or “false”. If “true”, then the values are sorted. The default is false.

SML Class: GUI_CTRL_ COMBOBOX

14 © 2003-2007 Microlmages, Inc. WWW.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

<listbox>
Description: A simple scrolled list from which the user can view and select items.

Valid inside: any layout element except <book >

Valid children: <items>

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Default — The value of the item that is to be selected by default. This can be overridden by setting
the Selected attribute of one of the items in the combobox.

OnChangeSelection — SML code to execute when the selected item changes.

OnDoubleClick — SML code to execute when the user double-clicks on a listitem.

width — Width of the control in “typical” characters. The default is to base the width on the width of the
widest item in the list.

Height — Height of the list in lines (default is 5).

Sort — Either “true” or “false”. If “true”, then the values are sorted. The default is false.

SelectStyle — One of the following:
“single” — (the default) allows one item to be selected.
“multi” — Multiple items selectable by simple toggle of each item
“extended” — Multiple items selected by SHIFT/CTRL key and mouse

SML Class: GUI CTRL_ LISTBOX

<menubutton>

Description: A pushbutton (text or icon) with a drop-down menu.
Valid inside: any layout element except <book >

Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourcelLookup, Enabled

Name — the text to be placed on the button

Icon — lcon to display. Based on ICONID values. For example, to use ICONID_CREATE_FILE, use
the string “CREATE_FILE”. You can get a full list of valid Icon IDs by looking at the
documentation for the GUI_CTRL_TOGGLEBUTTON class in SML.

ToolTip — tooltip text to display for the button (only if it has an icon)

OnSelection — SML code to execute when a menu item is selected.

OnMenuPopup — SML code to execute just before the menu is shown.

SML Class: GUI_CTRL_MENUBUTTON

© 2003 Microlmages, Inc. WwWw.microimages.com 15

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

<canvas>

Description: A drawing canvas.

Valid inside: any layout element except <book >
Valid children: none

Attributes:

id, HorizAlign, VertAlign, HorizResize, VertResize, WidthGroup,
ResourceLookup, Enabled

Height — The height of the drawing area in screen pixels.
Wwidth — The width of the drawing are in screen pixels
OnLeftDown — SML code to execute when the left mouse button is pressed.
OnLeftUp — SML code to execute when the left mouse button is released.
onRightDown — SML code to execute when the right mouse button is pressed.
OnRightUp — SML code to execute when the right mouse button is released.
OnMouseMove — SML code to execute when the mouse cursor is moved.
OnPaint — SML code to execute when the canvas needs to be drawn.
onSize — SML code to execute when the canvas size changes.

SML Class: GUI_CANVAS

16 © 2003-2007 Microlmages, Inc. Www.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

Using an XML Dialog Specification with an SML Script

To use a dialog specification in XML in conjunction with an SML script, the script must first declare an instance of
the class XMLDOC. Methods within this class are then used to ingest and parse the XML text, creating the
necessary structures in memory for use throughout the remainder of the SML script.

The XML dialog specification used with a particular SML script can be either embedded in the script or in a
separate file. Different methods in class XMLDOC are used to ingest the XML text in these two cases. If you want
to incorporate the dialog specification directly within the SML script, you assign the XML-formatted text containing
the specification to a string variable. In most cases this specification will span multiple lines of text. You can
include multiple text lines in an assignment statement by enclosing the text in single quotation marks, as in the
following example:

xml$ = '<?xml version="1.0"?>
<root>
<strings language="enu"/> <!-- English -->
<strings language="frc"> <!-- French translations -->

<string id="Sample"s>Echantillon</strings>
<string id="Hello"s>Bonjour</strings>
</strings>
<strings language="esn"> <!-- Spanish translations -->
<string id="Sample">Muestra</string>
<string id="Hello"s>Hola</string>

</strings>
<dialog id="hello" title="Sample" ResourceLookup="true" OnOK="OnOK() ">
<label>Hello</label>
</dialog>
</root>"';

class XMLDOC doc;
doc.Parse (xmls$) ;

As the above example shows, when the XML text has been assigned to a text string, the XMLDOC class method
Parse (xml$) is used to parse the XML text.

If you prefer to compose the XML text in an external editor and keep it as a separate .xml file, you use the
XMLDOC class method Read (filename$) to read the external file and automatically parse its contents. The
filename passed to this method must include the full directory path to the file as well as its filename and extension.
If you keep the SML script and the XML file in the same directory, you can simplify the task of specifying the path
(and make the script more readily portable) by using the CONTEXT class structure. When a script is run, an
instance of this class called context is created automatically. The class member context.ScriptDir finds
the path to the directory the script is in and can be used as a substitute for this path in string expressions, as in the
following example that refers to a dialog specification file “text.xml” in the same directory as the SML script. A
string expression is used to concatenate the script’s directory path with the name of the target file:

class XMLDOC doc;
xmlfile$ = context.ScriptDir + "/test.xml";
doc.Read(xmlfiles) ;

Both the Parse (xm1$) and Read (xml1£file$) class methods also check the XML syntax of the dialog
specification and return an error code (a negative integer) if syntax errors are found. You can write the script to
check the returned value and pop up an error message dialog if needed, as shown below:

© 2003 Microlmages, Inc. WwWw.microimages.com 17

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

numeric err;
class XMLDOC doc;

xmlfile$ = context.ScriptDir + "/test.xml";
) = Hessage M mE3
err = doc.Read(xmlfile$) ;
® Invalid ¥HL syntax reading file "===",
: Error code = =-1931
if (err < 0) Module: xml.c Revision: 1.25 Line: 547

PopupError (err) ;
Exit () ; |

OK

Details,.. | Save Text...l

Pressing the Details... button on the error message dialog opens another window listing the syntax errors. Note that
a single error (such as missing closing quotes on an attribute value or a missing end tag) may trigger a number of
listings in this window.

= Hessage | [C1]]

Entity: line 3: error: attributes construct error
W¥<dialog id="hello title="Hello, world!" Resourcelookup="false">
~

Entity: line 3: error: Specification mandate walue for attribute Hello
¥<dialog id="hello title="Hello, world!" Resourceloockup="false">
~

Entity: line 31 errori attributes construct error
Y<dialog id="hello title="Hello, world!" Resourcelookup="false™>

Entity: line 31 errori error parsing attribute nane
Y<dialog id="hello title="Hello, world!" Resourcelookup="false™>

Entity: line 3: error: attributes construct error
W<dialog id="hello title="Hello, world!" ResourcelLookup="false™>

Entity: line 3: error: snlParseStartTag: problen parsing attributes
¥<dialog id="hello title="Hello, world!" Resourceloockup="false">
~

Entity: line 3: error: Couldn’t find end of Start Tag
{dialog id="hello title="Hello
¥<dialog id="hello title="Hello, world!" ResourcelLookup="false™>

Entity: line 15: error: Opening and ending tag nismnatch: groupbox and pane
W/ pane>
-

Entity:z line 16: error: Opening and ending tag nisnatch: pane and dialog
W<{/dialog>
Ll

ok I Save Teut...l

Opening the Dialog

Opening the dialog specified by the XML text requires several steps:

1) Use the XMLDOC class method GetElementByID () to get the dialog element from the parsed XML and assign
it to an instance of class XMLNODE, the class used to represent elements in a parsed XML structure.

2) Set that XMLNODE instance as the source for an instance of class GUI_DLG, the SML class that actually
represents the dialog window.

3) Use a GUI_DLG class method to open the dialog window as either a modal or nonmodal dialog. A modal dialog
takes control and won’t let the SML program do anything else until the dialog closes. Modal dialogs are
automatically provided with “OK” and “Cancel” buttons. Nonmodal dialogs allow other program operations and
user interactions to continue while they are open. They are automatically provided with “OK”, “Apply”, and
“Cancel” buttons.

18 © 2003-2007 Microlmages, Inc. Www.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

The script excerpt below carries out these steps for a modal dialog:

class XMLNODE dlgnode;
dlgnode = doc.GetElementByID ("hello"); # “hello” is the value assigned to the id attribute
for the dialog element in the

XML text

if (dlgnode == 0) { # pop up an error message if dialog node can’t be found, then exit
PopupMessage ("Could not find dialog node in XML document") ;
Exit () ;

class GUI_DLG dlg;

dlg.SetXMLNode (dlgnode) ; # set this XML node as the source for the dialog window
numeric ret;
ret = dlg.DoModal () ; # open the window as a modal dialog

When the boModal () class method is called in the script, the method remains active until the user closes the modal
dialog. The method then returns the value -1 if the user pressed the Cancel button or 0 if the user pressed the OK
button. The script can assign the returned value to a numeric variable (the variable ret in the above example), then
check this value to determine succeeding actions. This strategy provides an easier alternative to writing explicit
oncCancel () and onok () callback procedures. Control/settings dialogs in standalone scripts are best set up as
modal dialogs; all user-input can be recorded using the modal dialog, then the remainder of the script can read these
settings and process the data accordingly.

Modeless dialogs are required in event-driven scripts such as tool scripts and display control scripts that provide
script interaction with geospatial data displayed in TNTmips Display process or in TNTatlas. These scripts consist
of a series of procedures or functions, each driven by an event such as a mouse-button press. To create and open a
dialog as a nonmodal dialog, you would use the GUI_DLG class method createModeless () to create the dialog in
memory and open () to open the dialog. The dialog might be created in one event-driven procedure (such as when
a tool script’s tool is initialized by opening the group or layout) and opened in another (such as each time the tool is
activated).

Reading Dialog Control Values

Once the dialog has been opened and the user has set its controls, the script needs to get the control settings to
continue with further processing. Each control in a dialog has a “value” that is either a number or a string. For
editnumber and edittext controls, the value is simply the number or string (respectively) entered by the user.
For a togglebutton, the value can be retrieved as either a number or a string; it is 1 or "yes" if set and 0 or "no" if
not set. For controls that involve selection of an item (combobox, 1istbox, menubutton, and radiogroup), the
value of the control is the value of the selected item. The value of each item is set by the Value attribute you
assigned to that item in the dialog specification. You can use any character string for the item attribute, but
obviously each item in a particular control should have a unique value. If you use only numerals in the attribute
string, you can read the value as either a number or a string. If you omit Value attributes for the items, the default
value is the numeric index (position) in the list, beginning with 1.

For modal dialogs, dialog settings should be retrieved before the dialog closes and the controls are destroyed.
Settings can be retrieved within callback procedures for individual controls or within the OnOK callback procedure
for the dialog window. There are several methods that can be used to get control settings. The simplest and most
direct way to get the control settings is to use the GUI_DLG class method cetvalues () to read the values of all of
the controls at once. These values are returned as an instance of the class GUIFORMDATA. You can then use
GUIFORMDATA class methods GetvalueNum(ctrl ids$) OF GetvalueStr (ctrl ids), where ctrl ids is
the id attribute you assigned for the control, to read each control value out of this structure as needed.

An alternate method is to use the GUI_DLG class methods GetCtrlvalueNum(ctrl ids$) and
GetCtrlvalueStr(ctrl id$) to retrieve the value of any control individually from the dialog. This method is
less efficient than the previous one if you need to retrieve values for several controls. Internally each of these

© 2003 Microlmages, Inc. WwWw.microimages.com 19

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

functions calls the cetvalues () class method to read all the control values, but returns only the requested value
and discards the rest.

A third method uses the Getctr1ByID () class method in GUI_DLG to get the control handle for a dialog control,
then a GetvalueNum () Or GetValueStr () method in the individual GUI_CTRL ... class to read the value.

Setting Dialog Control Values

For most dialog windows, you can set the default condition for each control (such as default value for an
editnumber field, default state for a togglebutton, and default selection for a combobox) in the dialog
specification in XML using the attribute provided for each control. However, you can also use statements in the
main SML script (or in callbacks for other controls in the dialog) to set a control. For example, in a dialog that
requires the selection of several input objects, you might want the dialog to show the name of the object after each
has been selected. You can use an edittext control (set to be read-only) next to the selection button for this
purpose. The callback for the selection button can construct a text string from the file name and object name of the
selected object and set this as the value for the edittext control. Class methods in the GUI_DLG class
(setCtrlvalueNum(ctrl id$) and SetCtrlvalueStr (ctrl ids$)) provide the simplest means to set control
values. There are also methods in the GUI_CTRL ... class for the individual control type that can be used to set the
control value or to set which item is selected by default in a group control.

Sample Script: Read and Set Control Values

The sample script below (xmldlg.sml) opens the dialog created by the specification on page 5 of this document
(from a file named test.xml). After the user sets the controls on the dialog and presses the OK button, the script
reads the values from the dialog using each of the methods outlined above and prints the values to the SML Console
Window. It also sets default values for several of the controls before the dialog is opened. You can download the
script and dialog specification from www.microimages.com/downloads/xmiscripts.htm.

numeric err, ret; # variable declarations
string xmlfile$;
class GUI_DLG dlg;

func TestFunc() { # define test callback function
PopupMessage ("I Said Ignore it!");

proc GetDlgValues () {

Here are four ways to get settings out of the dialog. The extracted values are printed
to the console window as an example.

1 -- Use the GetValues() class method in GUI_DLG to get all of the control settings at
at once. They are returned to a previously-declared instance of class GUI_FORMDATA.

Use GetValue...() methods in that class to read the values as needed.
printf ("Method 1...\n");
class GUI_FORMDATA data;

20 © 2003-2007 Microlmages, Inc. Www.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

data = dlg.GetValues() ;

printf (" RadioGroup value = %$s\n", data.GetValueStr ("radiogroup"));
printf (" FirstName: %s\n", data.GetValueStr("fname"));

printf (" Togglebutton numeric value = %d\n", data.GetValueNum("tbutton"));
printf (" Togglebutton string value = %$s\n\n", data.GetValueStr ("tbutton"));

2 -- Use GetCtrlValueNum() and GetCtrlVValueStr() class methods in GUI_DLG to ask the

dialog for each control value individually as needed. No GUI_FORMDATA class

instance is required. Less efficient than #1 if multiple control values are

needed. Internally it calls dlg.GetValues(), pulls out the one value asked for,

and discards the rest.

printf ("Method2...\n") ;

printf (" RadioGroup value = %s\n", dlg.GetCtrlValueStr ("radiogroup"));
printf (" FirstName: %$s\n", dlg.GetCtrlValueStr ("fname"));

printf (" Togglebutton numeric value = %d\n", dlg.GetCtrlValueNum("tbutton"));
printf (" Togglebutton string value = %$s\n\n", dlg.GetCtrlValueStr ("tbutton"));

3 -- Use the GetCtrIByID() method in GUI_DLG to get the control handle for a control class,
then a GetValue...() method in the individual GUI_CTRL ... class to read the control

value individually as needed.

printf ("Method3...\n");

class GUI_CTRL_EDIT STRING fname;
class GUI_FORM RADIOGROUP radio;

class GUI_CTRL TOGGLEBUTTON tbutton;
fname = dlg.GetCtrlByID("fname") ;
radio = dlg.GetCtrlByID("radiogroup") ;
tbutton = dlg.GetCtrlByID("tbutton") ;

printf (" RadioGroup value = %$s\n", radio.GetSelected());

printf (" FirstName: %s\n", fname.GetValue());

printf (" Togglebutton numeric value = %d\n", tbutton.GetValueNum()) ;
printf (" Togglebutton string value = %$s\n\n", tbutton.GetValueStr());

4 -- A more compact (but perhaps less clear) version of method 3. Methods to get the control

handle and its value are strung together, eliminating the need to declare the control handle

class variable.

printf ("Method 4...\n");

printf (" RadioGroup value = %$s\n", dlg.GetCtrlByID("radiogroup") .GetValueStr ()
printf (" FirstName: %s\n", dlg.GetCtrlByID("fname") .GetValueStr());

printf (" Togglebutton numeric value = %d\n",

dlg.GetCtrlByID("tbutton") .GetValueNum()) ;

printf (" Togglebutton string value = %$s\n\n",

dlg.GetCtrlByID("tbutton") .GetValueStr ());

NOTE: if the control value must be accessed in several places, store it as a variable for
#reuse. Values read from GUIFORMDATA or the dialog would be stored as numeric or string
variables.

} # end GetDlgValues|()

####H# Main script #####
clear () ; # clear the console window
class XMLDOC doc;

xmlfile$ = context.ScriptDir + "/test.xml";
err = doc.Read(xmlfile$); # read and parse the dialog specification

)i

© 2003 Microlmages, Inc. WwWw.microimages.com

21

Reference Guide to SML Dialog Specification in XML TNT Products 2008:74, September 2008

if (err < 0) {

PopupError (err) ; # Popup an error dialog. "Details" button will say what's wrong.

Exit () ;
class XMLNODE dlgnode;dlgnode = doc.GetElementByID("test"); # get the dialog element from
the #
parsed XML
if (dlgnode == 0) {

PopupMessage ("Could not find dialog node in XML document") ;

Exit () ;
dlg.SetXMLNode (dlgnode) ; # set the XML dialog element as the source for dialog class
dlg.SetCtrlvalueStr ("fname", "Fred"); # setvalue for edittext control "fname"
dlg.SetCtrlvalueStr ("radiogroup", "button2"); # setvalue for radiogroup control
ret = dlg.DoModal () ; # open as modal dialog

Note: ret will be -1 if user hit cancel, 0 for OK

printf ("DoModal () returned %d\n", ret);

Dynamic Customization of Dialogs

In a script that launches a complex processing sequence, it may not be possible to bring all the required controls
together into one dialog window. In such cases, a push button on the main dialog window can be set up to open an
auxiliary dialog window that is also specified in XML. One example is provided by the sample script deveg68.sml.
This script is designed to process a multispectral image to suppress the expression of vegetation. The script and a
color plate describing it are available from www.microimages.com/downloads/xmlscripts.htm.

= Suppress Yepetation by Forced Invariance _ []

Select input near=-infrared and red wavelength bands:

Select HIR,.. |IC:\I]ata\Landsat\Spr‘ingthTH.r"uc: % TH4
=Set Dark Pixel Yalues EmE]
Select RED... |IE:\I]ata\Landsat\SpringthTH.r"uc % TH3

Set Dark Pixel {Path Radi ¥
F Devegetate HIR T Devegetate RED et fark Tine a adiance
Correction Yalues:
I 4 Hunber of additional band=s to devegetate Select Bands,.. |
SpringHtnTH,.rvc % TH4 I 6
C:A\DatahLandzat\SpringHtnTH,rve % TH1 .
C:vDatasLandsat\SpringHtnTH.rvc M\ TH2 SpringiHtnTH.rvc % TH3 I 11
C:sDatasLandsat\SpringHtnTH.rvc % THS . I—
CzvDatasLandsats\SpringHtnTH.rvc % TH? SpringtftnTH.rve \ THl il
SpringhtnTH.rvc M TH2 I 17
Set dark pixel values,,, Curve-fitting Paraneters: SpringHtnTH.rvc % THS I B
F Average initial nedians SpringhtnTH.rve % TH7 I 1
I Smooth Band ws ¥I curve
DK I Cancell
Select Output File... I IE:\I]ata\Landsat\Springl‘ItnTI‘ll]ut.r'uc:

Select directory in which THTmips is installed: Directory,.. I

DK I [Zant:ell

The illustration above left shows the main dialog window created by the devegetation script. A numeric Dark Pixel
value is required for each multispectral image band to be processed. To enter these values, the user presses the Set
dark pixel values... pushbutton on the main dialog window; the callback procedure for this button creates and opens
the auxiliary Set Dark Pixel Values window (above right). This window shows a list of the bands to be processed;

22 © 2003-2007 Microlmages, Inc. WWW.microimages.com

TNT Products 2008:74, September 2008 Reference Guide to SML Dialog Specification in XML

each entry consists of a label element (with the file name and object name) and an edi tnumber control, both of
which are contained in a layout pane with horizontal orientation.

Note that the file and object names required for the Set Dark Pixel Values dialog are not known in advance, and
even the number of bands to be processed is not fixed. Therefore only a skeletal representation of this dialog can be
provided by the embedded XML specification in the callback. This static specification sets up the dialog itself, the
label at the top, the groupbox, and a blank layout pane within the groupbox. After the static specification is
parsed into memory, the remaining elements of the dialog specification must be added dynamically to the XML
structure in memory, using information from the input objects the user has selected, before the dialog is opened.

Methods in the class XMLNODE are used to modify the XML dialog structure in memory. You can add a new
"child" element to any existing element and set their attribute values. Any element of the static XML specification
that needs to be modified later should have an id attribute so the element can be accessed. In this case the blank
layout pane inside the groupbox is assigned the id "dplist". To add each entry in the required list, a horizontal
pane is added as a child element to dplist. The new pane for the current entry then is used as the parent for a child
label element and a child editnumber element, with attribute values derived from the corresponding input object.

The script excerpt below shows the first portion of the callback procedure, which includes the static XML
specification for the Set Dark Pixel Values dialog and the code that adds the first band entry to the window. The
other band entries are handled in a similar manner.

proc SetDP () {

Create string variable with XML specification of dialog
#it# to enter dark-pixel-correction values

xmldp$ = '<?xml version="1.0"7?>
<root>
<dialog id = "dpdlg" title = "Set Dark Pixel Values" OnOK = "dpOK()" >

<label>Set Dark Pixel (Path Radiance)</label>
<label>Correction Values:</label>

<groupbox ExtraBorder = "3">
<pane id = "dplist" Orientation = "Vertical"/s>
</groupbox>
</dialog>
</root>"';

Parse XML text for dialog into memory; return error if there are syntax errors.
err = docdp.Parse (xmldp$) ;

if (err < 0) {
PopupError (err); #pop up an error dialog
Exit () ;

HHH R HHHHHHH A R
Modify the XML structure in

memory before opening the dialog
B

Get the id for the parent pane that will contain the list of bands and the

numeric fields for the correction values
class XMLNODE dplist;
dplist = docdp.GetElementByID("dplist");

© 2003 Microlmages, Inc. WwWw.microimages.com 23

Reference Guide to SML Dialog Specification in XML

PR R

Add horizontal pane for the first row of dialog elements
(label and numeric field for NIR band)

HUHHHHH A

class XMLNODE paneNIR;

paneNIR = dplist.NewChild("pane");

paneNIR.SetAttribute("Orientation", "Horizontal");

Add label with name of NIR band to the NIR pane

class XMLNODE labelNIR;

labelNIR = paneNIR.NewChild("label");

nirprtext$ = sprintf("%$s.%s \\ %s",
FileNameGetExt (nirfile$),

labelNIR.SetText (nirprtexts) ;

Add editnumber field to the NIR pane and set its attributes
class XMLNODE prEditNIR;

PrEditNIR = paneNIR.NewChild("editnumber");
prEditNIR.SetAttribute("id", "prEditNIR");
PrEditNIR.SetAttribute("Width", "5");
prEditNIR.SetAttribute("Minval", "O");
prEditNIR.SetAttribute("MaxVal", "255");
prEditNIR.SetAttribute("Default", NumToStr (nirmin));
prEditNIR.SetAttribute("Precision", "0");

[...code for additional list entries...]

} #end of SetDP()

TNT Products 2008:74, September 2008

FileNameGetName (nirfiles),
nirobjnames) ;

24 © 2003-2007 Microlmages, Inc.

www.microimages.com

	Before Getting Started
	Welcome to Building Dialogs in SML
	Dialogs from XML Text
	A Simple Dialog Specification in XML
	Using Attributes for Tags
	Togglebuttons and Empty Tags
	Combobox and Items
	Radiogroup and Groupbox
	Numeric Fields and Layout Panes
	Pushbuttons and Listbox
	Menubuttons
	Edittext and Colorbutton
	Using Tabbed Pages
	Specification fro Flowpath Dialog

	Using an XML Dialog Specification
	Creating and Opening the Dialog Window
	Trapping XML Errors
	Trapping Dialog ID Errors
	Using an XML Editor
	Programming the OK and Cancel Buttons
	Specifying Callbacks for Dialog Buttons
	Using the Script Tag
	Getting Values from the Dialog
	Changing Control Settings in Callbacks
	Managing a Complex Dialog Window
	Suppressing Default Pushbuttons
	Creating a View in a Dialog Window
	A Complex Dialog with a View
	Dynamically Adding Dialog Components
	Raster Intervals Script Dialogs
	Using a Drawing Canvas
	Localizing a Script Dialog
	Modeless Dialogs
	Using a Canvas with a Modeless Dialog
	Index and MicroImages Product Information
	Reference Guide to SML Dialog Specifications in XML
	About XML
	Overview of Tag Set and Classes for SML Dialog Specifications
	Callbacks
	Example Dialog Specification in XML
	Common Dialog Element Attributes
	Dialog (Form) Elements
	Main Elements
	<root>
	<dialog>
	<script>
	<strings>
	<string>

	Layout Elements
	<pane>
	<page>
	<book>
	<groupbox>

	Control Elements
	<label>
	<pushbutton>
	<togglebutton>
	<colorbutton>
	<edittext>
	<editnumber>
	<item>
	<radiogroup>
	<combobox>
	<listbox>
	<menubutton>
	<canvas>

	Using an XML Dialog Specification with an SML Script
	Opening the Dialog
	Reading Dialog Control Values
	Setting Dialog Control Values
	Sample Script: Read and Set Control Values
	Dynamic Customization of Dialogs

