
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

Pipeline Programming Basics
Geospatial Scripting

SOURCE_RVC

FILTER_RESAMPLE

TARGET_RVC

Input
SOURCE_RVC

Reference

Annotated diagram of pipeline to resample an image to match a
reference image (see PipelineResampleToMatch.sml on reverse).

Constructing Pipeline Stages

Construct
source;
Initialize

Construct
source;
Initialize

choose Raster
to be resampled

choose reference
Raster to match

get georeference from sources; coordinate
reference systems must be defined and

nonlocal but do not have to match; if either has
invalid CRS, report error and exit script

get pixel scale (cell size) for center of each
source from its georeference and compute cell
area for each; compare areas to automatically
set the most appropriate resampling method

resampling method

Construct with input image,
reference image, &
resampling method;
Initialize

Construct target with filter as
input stage;
Set compression;
Initialize

call Process() method on target

choose output
raster (Project File
and object name)

This Technical Guide introduces programming basics for setting
up and executing an image-processing pipeline in a geospatial script.
The illustration diagrams an example: a script to resample an image
in a Project File to match a reference image with the output directed
to a Project File. (Code excerpts and comments for this script,
PipelineResampleToMatch.sml, are on the reverse.) The pipeline
in this script includes two sources (input and reference images),
one filter (resampling), and one target (see the Technical Guide
entitled Geospatial Scripting: Pipeline Image Processing for defi-
nitions). The example also demonstrates that, although the pipeline
architecture is designed to encapsulate image data, properties, and
operations, a script can obtain properties from pipeline stages to
check for errors and compute values to be used later in the pipeline.

Pipeline stages in the Geospatial Scripting Language (SML) are
classes in the IMAGE_PIPELINE group. The pipeline classes used
in this sample script are located there, namely:

Classes in SML have members (properties that can be read or in
some cases changed by your script) and methods (predefined func-
tions that the script can call to operate on class data). Pipeline
classes can also have special methods called constructors for de-
claring a unique instance of the class and defining its parameters.
The constructors for source stages, for example, require that you
specify the image to be assigned to that particular source. Source
stages can refer either to raster objects in Project Files or to external
image files such as GeoTIFF. In this sample script the
SOURCE_RVC class is used and each source instance is constructed
using an instance of class RVC_OBJITEM (in the RVC SYSTEM
class group) that refers to the required raster object in a Project
File. The script uses a function called DlgGetObject() in the Popup
Dialog function group to provide a dialog allowing the user to
choose the required raster and populate an instance of
RVC_OBJITEM.

Constructors for filter stages require that you specify at least one
input stage and may require additional parameters. The
FILTER_RESAMPLE constructor used here, for example, requires
a parameter specifying the resampling method to use. Filter stages
can also have different versions of their constructors with different
required parameters. There are several versions of the
FILTER_RESAMPLE constructor; the one used here specifies a
reference image to match in coordinate reference system and cell

Initializing Pipeline Stages
Each pipeline stage class has an Initialize() method that must be
called before the pipeline can use that stage. This method checks
that all of the specified input stages are properly defined and re-
turns an error code (a negative number) if any do not. As illustrated
by the sample script, for debugging purposes a pipeline script should
check this error value and return an error to the console or to a
popup message dialog to report any errors. This sample script also
demonstrates a higher level of error checking: it gets the georeference
definition from both input and reference sources to check that each
has a valid (though potentially different) coordinate reference sys-
tem that can then be properly used in the resampling filter.

• IMAGE_PIPELINE_SOURCE_RVC: an image source created
from a raster object in a MicroImages Project File

• IMAGE_PIPELINE_FILTER_RESAMPLE: filter to resample
and reproject an image

• IMAGE_PIPELINE_TARGET_RVC: pipeline target that cre-
ates a raster object in a Project File

• IMAGE_PIPELINE_GEOREFERENCE: support class to ac-
cess georeference properties obtained from a pipeline stage

The complete list (with documentation) of available pipeline classes
as well as other SML classes and functions can be found in the
Script Reference window opened from the SML Editor.

size, whereas another version omits the reference image and re-
quires an output coordinate reference system and cell size instead.

Constructors for a target stage require that you specify the input
filter and identify the output image. For a TARGET_RVC, you
pass the constructor an RVC_OBJITEM corresponding to the new
output raster object. (Sources and targets for external image types,
such as TIFF, are constructed using a FILEPATH class instance, as
illustrated in sample scripts PipelineContrastCompositeToTIFF.sml
and PipelineNDVIfromTIFF.sml.) Once it is constructed, you can
set a compression option for a TARGET_RVC instance using the
SetCompression() class method.

Processing the Pipeline
Once all of the pipeline stages are defined and initialized, the script
initiates processing by calling the Process() class method on the
target stage. This method pulls the images through all of the steps
of the pipeline and creates the final result image in the designated
location.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

class RVC_OBJITEM riObjItem;
DlgGetObject("Select raster to resample:", "Raster", riObjItem, "ExistingOnly");

class IMAGE_PIPELINE_GEOREFERENCE sourceGeoref;
sourceGeoref = source_In.GetGeoreference();

class RVC_OBJITEM rastOutObjItem;
DlgGetObject("Choose raster for resampled output", "Raster", rastOutObjItem,

"NewOnly");

class IMAGE_PIPELINE_FILTER_RESAMPLE filter_rsmp(source_In,
source_Ref, rsmpMethod$);

err = filter_rsmp.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Resample filter initialized.");

proc ReportError(numeric linenum, numeric err) {
printf("FAILED -line: %d, error: %d\n", linenum, err);
PopupError(err);
}

Pipeline Script to Resample/Reproject Image to Match a Reference Image
(PipelineResampleToMatch.sml)

CHOOSE INPUT IMAGE to be resampled
objItem for input raster

class IMAGE_PIPELINE_SOURCE_RVC source_In(riObjItem);
err = source_In.Initialize();
if (err < 0)

ReportError(_context.CurrentLineNum, err);
else print("Pipeline source initialized.");

PIPELINE SOURCE for input image

printf("Source image has %d lines and %d columns.\n", source_In.GetTotalRows(),
source_In.GetTotalColumns());

check that input image source has valid coordinate reference system

get coordinate reference system from the source georeference

class SR_COORDREFSYS crs;
crs = sourceGeoref.GetCRS();

if (crs.IsDefined() == 0 or crs.IsLocal()) {
PopupMessage("Source coordinate reference system is undefined or local;

exiting script.");
Exit();
}

else printf("Coordinate reference system: %s\n", crs.Name);

CHOOSE OUTPUT RASTER

PIPELINE FILTER to resample source image

 PIPELINE TARGET: set up the target for the pipeline

class IMAGE_PIPELINE_TARGET_RVC target_rvc(filter_rsmp, rastOutObjItem);
target_rvc.SetCompression("DPCM", 0);
err = target_rvc.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Pipeline target initialized.");

EXECUTE pipeline process
print("Processing...");
target_rvc.Process();

define error
checking
procedure

print("Done.");

get line and column cell sizes from input and reference images

location at center
of input image

numeric err;

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for
scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

error code returned

clear();

_context.AbortOnError = 0;
set context so script does not exit on error,
allowing manual handling of errors.

class RVC_OBJITEM refObjItem;
DlgGetObject("Select reference raster:", "Raster", refObjItem, "ExistingOnly");

CHOOSE REFERENCE RASTER TO RESAMPLE TO

class IMAGE_PIPELINE_SOURCE_RVC source_Ref(refObjItem);
err = source_Ref.Initialize();
if (err < 0)

ReportError(_context.CurrentLineNum, err);
else

print("Reference source initialized.");

printf("Reference image has %d lines and %d columns.\n",
source_Ref.GetTotalRows(), source_Ref.GetTotalColumns());

SET PIPELINE SOURCE FOR REFERENCE IMAGE

check that reference image has valid coordinate reference system

class IMAGE_PIPELINE_GEOREFERENCE refGeoref;
refGeoref = source_Ref.GetGeoreference();

if (crsRef.IsDefined() == 0 or crsRef.IsLocal()) {
PopupMessage("Reference coordinate reference system is undefined or local;

exiting script.");
Exit();
}

else
printf("Reference coordinate reference system: %s\n", crsRef.Name);

class POINT2D scaleIn, scaleRef;

class POINT2D locIn, locRef;

column and line cell sizes of input
and reference as x and y values of
POINT2D;

column and line locations for
which to obtain cell size

locIn.x = source_In.GetTotalColumns() / 2;
locIn.y = source_In.GetTotalRows() / 2;

locRef.x = source_Ref.GetTotalColumns() / 2;
locRef.y = source_Ref.GetTotalRows() / 2;

location at center
of reference image

sourceGeoref.ComputeScale(locIn, scaleIn, 1);
refGeoref.ComputeScale(locRef, scaleRef, 1);

pixel scales of input and
reference image in meters

scaleIn.x = abs(scaleIn.x); scaleIn.y = abs(scaleIn.y);
scaleRef.x = abs(scaleRef.x); scaleRef.y = abs(scaleRef.y);

pixel scale can be negative, so get absolute values

printf("Input image cell sizes: line = %.2f m, col = %.2f m\n", scaleIn.y, scaleIn.x);
printf("Reference image cell sizes: line = %.2f m, col = %.2f m\n", scaleRef.y,

scaleRef.x);

get coordinate reference system from the source georeference

class SR_COORDREFSYS crsRef;
crsRef = refGeoref.GetCRS();

reference raster's coordinate
reference system

numeric inCellArea, outCellArea;
inCellArea = scaleIn.x * scaleIn.y; outCellArea = colCellSize * lineCellSize;

SET APPROPRIATE RESAMPLING METHOD based on relative
cell size of input and reference (output) images

string rsmpMethod$;
if (outCellArea > 2 * inCellArea) then rsmpMethod$ = "Average";

else rsmpMethod$ = "CubicConvolution";
printf("Resampling method: %s\n", rsmpMethod$);

set resampling method

