
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

Pipeline Structures for Multiple Inputs
Geospatial Scripting

A previous Technical Guide (Geospatial Scripting: Pipeline Pro-
gramming Basics) presents an example of a relatively simple pipeline
programming task using the TNT Geospatial Scripting Language
(SML): resampling a raster object from a MicroImages Project File
to match a reference raster object. But what if you want to resample
any number of raster objects (for example, six bands of a Landsat
scene, or a color composite and an elevation raster) to match that
same reference image? In effect, you want to reuse the same image
processing pipeline for each of the input rasters to create a unique
output raster. The solution is to wrap the “reuseable” portion of the
pipeline within a user-defined procedure or function within the script.
The illustration below diagrams the design of such a script,
PipelineResampleToMatchMulti.sml, which is also excerpted on
the reverse.

Each of the raster objects you select as input for such a script must
be set up as a unique image source paired with an associated image
target. The sample script thus requires matching lists of
RVC_OBJITEM class instances for the sources and targets, and the
number of items is not known until the input raster objects are se-
lected. Such “lists” can be set up by declaring an instance of class
RVC_OBJITEM as a hash (a data class similar to an array). The
input hash is populated using a predefined function [DlgGetObjects()
in the Popup Dialog function group] that provides a dialog to prompt
the user to select any number of input raster objects and reads their
RVC_OBJITEMS into the specified hash. A second function
[DlgGetObjectSet()] to select a specified number of objects (set to
be the same as the number of inputs selected) is used to populate
the hash of output RVC_OBJITEMS.

The script contains a processing loop that iterates through the hashes
of input and output RVC_OBJITEMS and passes each pair to the
user-defined function, where they are used to construct the source
and target stages for that iteration. Since the same reference image

SOURCE_RVC
Reference

choose reference
Raster to match

get georeference &
check for valid

coordinate reference
system; if none, report

error and exit script

choose Rasters
to resample

choose matching
number of output
rasters

FILTER_RESAMPLE

TARGET_RVC

call Process()
method on target

SOURCE_RVC
Input

Construct source;
Initialize

check CRS &
set resampling

method

Loop
through inputs
and outputs:

User-defined function

call user-defined
function (gray

box) to resample
current input to
current output

(gray box) contains the
part of the processing
pipeline that is reused
for each input / output
pair of raster objects.

Annotated diagram of pipeline script to resample multiple images
to match a reference image (see excerpts of

PipelineResampleToMatchMulti.sml on reverse).

FILTER_MOSAIC

TARGET_RVC

SOURCE_RVC
Reference

Annotated diagram of pipeline script to mosaic multiple images
to match a reference image (see excerpts of
PipelineMosaicToReference.sml on reverse).

Construct
source;
Initialize

Construct as
array of sources;

choose Rasters
to mosaic

choose reference
Raster to match

get georeference from
reference and check for

valid coordinate reference
system; if none, report

error and exit script

Construct with STAGE_ARRAY,
reference image, resampling
method, & overlap method;
Initialize

Construct target with filter as
input stage;
Set compression;
Initialize

call Process() method on target

choose output
raster (Project File
and object name)

STAGE_ARRAY

SOURCE_RVC

Input 1,
Input 2,
Input 3,
Input 4,

...

Loop
through inputs:

1) Initialize source;
2) check for valid

CRS;
3) if so, add to

STAGE_ARRAY

is used for each pass, the reference source is constructed and ini-
tialized only once, outside the user-defined function, and its class
instance is also passed to the function for use in constructing the
resampling filter stage for the current iteration. Within the user-
defined function, the input source, resampling filter, and target stage
are all constructed and initialized and the Process() method is called
for the target to process the current image through the pipeline.

A pipeline script to create a mosaic from any number of input im-
ages, such as the example diagrammed below and excerpted on the
reverse (PipelineMosaicToReference.sml), requires a somewhat
different script structure. The Mosaic filter uses an instance of
class IMAGE_PIPELINE_STAGE_ARRAY to hold all of the im-
ages to be mosaicked. Each of the unique sources that populate the
STAGE_ARRAY must remain valid when the pipeline is processed,
so the script can’t reuse the same SOURCE_RVC class instance to
populate the STAGE_ARRAY. You also don’t know how many
sources the script will need until the input images are selected. The
solution is to construct the SOURCE_RVC class as an array of
class instances. The script uses a processing loop to add sources
(indexed by number) to the array of sources using a corresponding
hash of RVC_OBJITEMS from the selected input raster objects.
This loop also get the georeference information from each input
and determines if it has a valid, non-local coordinate reference sys-
tem (CRS; it can be different from that of other inputs or the
reference image); if so, that source is appended to the stage array,
whereas any input raster lacking a valid CRS is simply skipped.
The mosaic filter is then constructed using the STAGE_ARRAY
and a reference source that sets the extents, CRS, and cell size of
the mosaic.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • February 2008

Excerpts of Pipeline Script to Mosaic Images to Match a Reference Image
(PipelineMosaicToReference.sml)

 PIPELINE TARGET: set up the target for the mosaic pipeline

class IMAGE_PIPELINE_TARGET_RVC target_rvc(mosaic, mosObjItem);
target_rvc.SetCompression("DPCM", 0);
err = target_rvc.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Pipeline target initialized.");

EXECUTE pipeline process
print("Processing...");
target_rvc.Process();

print("Done.");

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language for
scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

class IMAGE_PIPELINE_FILTER_MOSAIC mosaic(stages, refSource,
"Nearest", "Last");

err = mosaic.Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else print("Mosaic filter initialized.");

PIPELINE FILTER to mosaic the input rasters

CHOOSE GEOREFERENCED
RASTERS TO MOSAIC

class RVC_OBJITEM inObjItemList[];
numeric numInputs;

HASH of RVC_OBJITEMS
for unknown number of input
rasters to mosaic

DlgGetObjects populates an RVC_OBJITEM hash
with the RVC_OBJITEM of each selected raster

DlgGetObjects("Choose georeferenced rasters to mosaic:", "Raster", inObjItemList,
"ExistingOnly", 2);

set up array of RVC_SOURCE class handles
with number equal to number of input rasters

numInputs = inObjItemList.GetNumItems();
class IMAGE_PIPELINE_SOURCE_RVC sources[numInputs];

set up PIPELINE STAGE_ARRAY to pass to the mosaic filter;
construct with unspecified number of stages to allow for
skipping ungeoreferenced inputs

class IMAGE_PIPELINE_STAGE_ARRAY stages();

printf("Number of rasters to mosaic = %d\n", numInputs);

declare class variables to use in processing the input rasters

class RVC_OBJITEM objItem;
class IMAGE_PIPELINE_GEOREFERENCE sourceGeoref;
class SR_COORDREFSYS crs;

if (crs.IsDefined() == 0 or crs.IsLocal()) {
printf("Coordinate reference system

for source %d is undefined or local.\n", i);
printf("Source %d will be omitted from mosaic.\n", i);
}

else {
printf("Source %d: CRS = %s\n", i, crs.Name);
stages.Append(sources[i]);
}

}

for i = 1 to numInputs {

PIPELINE SOURCE for each input image; add a new source
for the current image to the source array and initialize

get ObjItem for current source image
from hash of RVC_OBJITEMSobjItem = inObjItemList[i];

sources[i] = new IMAGE_PIPELINE_SOURCE_RVC(objItem);
err = sources[i].Initialize();
if (err < 0) ReportError(_context.CurrentLineNum, err);
else printf("\nInitialized source %d of %d\n", i, numInputs);

check that source has valid coordinate reference system;
if valid, add source to STAGE_ARRAY, otherwise skip

sourceGeoref = sources[i].GetGeoreference();
crs = sourceGeoref.GetCRS();

append source to the STAGE_ARRAY

loop through the hash of input objItems

CHOOSE OUTPUT RASTER

class RVC_OBJITEM mosObjItem;
DlgGetObject("Select new raster object for the mosaic:", "Raster", mosObjItem,

"NewOnly");

ObjItem for the output mosaic raster

CHOOSE GEOREFERENCED INPUT
RASTERS to be resampled.

class RVC_OBJITEM inObjItemList[];
numeric numInputs;

HASH of RVC_OBJITEMS
for unknown number of
input rasters to resample

DlgGetObjects populates an RVC_OBJITEM hash
with the RVC_OBJITEM of each selected raster

DlgGetObjects("Choose georeferenced rasters to resample:", "Raster",
inObjItemList, "ExistingOnly", 2);

numInputs = inObjItemList.GetNumItems();
printf("Processing %d input rasters.\n\n", numInputs);

MAKE STRINGLIST OF LABELS FOR DIALOG
PROMPTING FOR OUTPUT RASTERS

class STRINGLIST labelList;
for i = 1 to numInputs

{
labelList.AddToEnd(inObjItemList[i].GetDescriptor().GetShortName());
}

CHOOSE OUTPUT RASTERS

class RVC_OBJITEM outObjItemList[];
DlgGetObjectSet("Choose rasters for resampled output", "Raster", labelList,

outObjItemList, "NewOnly");

DlgGetObjectSet populates an RVC_OBJITEM hash
with the RVC_OBJITEM of each selected raster

LOOP THROUGH HASHS OF INPUT AND OUTPUT
RVC_OBJITEMS TO RESAMPLE IMAGES

for i = 1 to numInputs
{

err = rsmpPipe(inObjItemList[i], outObjItemList[i], source_Ref, refCellArea,
i, labelList);

if (err == 0)
printf("Source image %d has undefined or local coordinater reference

system; \n no resampled raster was made.\n\n", i);
else if (err < 0) ReportError(_context.CurrentLineNum, err);
}

print("Done.");

CALL USER-DEFINED FUNCTION TO RESAMPLE AN IMAGE

invalid coordinate reference system for input

[code to set up and initialize source for reference image omitted]

Excerpts of Pipeline Script to Resample Multiple
Images to Match a Reference Image

(PipelineResampleToMatchMulti.sml)

[code to set up and initialize source for reference image omitted]

[function definition omitted]

