
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • January 2006

Mapping Catchment Areas for Sample Points
Sample Script

The SampleCatchments script developed by MicroImages
demonstrates how the TNT geospatial scripting language
(SML) enables you to automate complex processing of your
geospatial data and provide custom analysis capabilities.
This script uses functions and data structures associated
with the TNTmips Watershed process to delineate the up-
stream watershed catchments for sample locations
represented by many points in a vector object. The
TNTmips Watershed process provides interactive manual
placement of seed points to compute upstream catchment
areas, but this is only practical for a few sample points.
The SampleCatchments script automates this procedure
for use with hundreds or thousands of sample points and
also creates appropriate attributes for the derived
catchments. The catchment mapped by the script for each
sample point encompasses the area of the landscape that
could have contributed to the composition of the water or
stream sediment sample collected at the point’s location.

Stream sediment sampling locations (black dots) monitoring dioxin
pollutant levels in the lower Willamette River basin (Oregon, USA).
Upstream catchment polygons determined by the SampleCatch-
ments script for these locations are theme-mapped by dioxin
concentration (in picograms dioxin per gram of sample).

Input sample points (orange dots) may not
lie exactly on the flowpaths calculated by
the watershed function, so the script snaps
each sample point to the closest vertex on
the closest flowpath line (black dots) within
the specified search distance before
delineating the upstream catchments.

You can use either a raw DEM or a depressionless DEM previously created by the
Watershed process. In the latter case, turn off the Fill All Depressions toggle
button to skip this computationally-intensive step. Use the Flow Path and Basin
panel to set the parameters controlling the density and complexity of the flowpaths created by the script. For the most efficient
processing of many sample points, process the DEM through the standard Watershed process first and experiment there to
determine the flowpath parameter set that creates the flowpath network with the minimum required density and complexity.

The vector objects and associated databases produced by this
script could be used to help identify likely source areas asso-
ciated with anomalous sample compositions in stream pollution
studies and in mineral exploration surveys, among other ap-
plications.
Script inputs include an elevation raster object (DEM) and
the vector object containing the sample points. These objects
are selected and other script parameters are set using controls
on a custom dialog window created and opened by the script.

The script, which is excerpted on the reverse side of this plate,
produces a vector object containing the sample points after
relocation to the nearest watershed flowpath and another con-
taining the catchment area polygons, among others. Any
database attributes attached to the sample points are automati-
cally transferred to records attached to the relevant catchment
polygons. The color plate entitled Sample Script: Catchment
Analysis for Locating Ore Deposits provides additional ex-
amples of the use of this script.

Dioxin concentration (pg / g)

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • January 2006

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting lan-
guage for scripts and queries. These scripts can be downloaded from www.microimages.com/downloads/scripts.htm.

Script Excerpts for SampleCatchments.sml

local numeric numBasinsComputed = 0;
local numeric numUserBasins = NumVectorPolys(UBasinVECT);
local class DATABASE UBasinDB = OpenVectorPolyDatabase(UBasinVECT);

if (TableCopy(SampleDB, SampleTBL, UBasinDB) < 0) {
message = "Error occured while trying to copy the sample table.\n" + "Exiting the script now... \n";
print(message);
fwritestring(summaryFile, message);

CloseRaster(SampleDEM); CloseVector(SampleVECT);
CloseVector(WarpVECT); CloseVector(ResultVECT); CloseVector(UBasinVECT);
Exit();
}

local class DBTABLEINFO UBasinSampleTBL = DatabaseGetTableInfo(UBasinDB, sampleTblName);
UBasinSampleTBL.OneRecordPerElement = 1;

local class DBTABLEINFO UBasinPolyToPolyTBL = TableCreate(UBasinDB, PolyToPolyTblName, PolyToPolyTblDesc);

TableAddFieldString(UBasinPolyToPolyTBL, sampleIDFldName, 12);

TableAddFieldInteger(UBasinPolyToPolyTBL, numPolysPerSampleFldName, 15);

TableAddFieldFloat(UBasinPolyToPolyTBL, areaSamplePolysFldName, 15, 4);

for i = 1 to numUserBasins {
records[1] = TableWriteRecord(UBasinPolyToPolyTBL, 0, "", 1, -1);
TableWriteAttachment(UBasinPolyToPolyTBL, i, records, 1, "polygon");
}

for i = 1 to numSamplePoints {
Temp1ObjX = ResultVECT.Point[i].Internal.x;
Temp1ObjY = ResultVECT.Point[i].Internal.y;
ObjectToMap(ResultVECT, Temp1ObjX, Temp1ObjY, RSLTgeoref, Temp1MapX, Temp1MapY);

polyNum = FindClosestPoly(UBasinVECT, Temp1MapX, Temp1MapY, UBSNgeoref);

if (polyNum > 0) {
TableReadAttachment(ResultSampleTBL, i, records, "point");
sampleNum$ = TableReadFieldStr(ResultSampleTBL, sampleIDFldName, records[1]);

TableReadAttachment(UBasinPolyToPolyTBL, polyNum, records, "polygon");
TableWriteField(UBasinPolyToPolyTBL, records[1], sampleIDFldName, sampleNum$);
TableWriteField(UBasinPolyToPolyTBL, records[1], numPolysPerSampleFldName, 1);
}

}

string watershedparms$ = "";
if (mainDLG.GetCtrlByID("id_FILL_ALL_DEP").GetValueNum()) {

watershedparms$ += "FillAllDepressions,";
}

if (mainDLG.GetCtrlByID("id_COMP_USR_FLOWPATH").GetValueNum()) {
watershedparms$ += "FlowPath,";
}

watershedparms$ += "Basin";
WatershedComputeElements(watershed, x, y, numSamplePoints, watershedparms$);

if (mainDLG.GetCtrlByID("id_COMP_USR_FLOWPATH").GetValueNum()) {
WatershedGetObject(watershed, "VectorUserFlowPath", ObjectFilename, ObjectName);
ObjNumber = ObjectNumber(ObjectFilename, ObjectName, "VECTOR");
CopyObject(ObjectFilename, ObjNumber, OutputProjectFile);
}

WatershedGetObject(watershed, "VectorUserBasin", ObjectFilename, ObjectName);
ObjNumber = ObjectNumber(ObjectFilename, ObjectName, "VECTOR");
CopyObject(ObjectFilename, ObjNumber, OutputProjectFile);

OpenVector(UBasinVECT, OutputProjectFile, "USDBASIN");
local class GEOREF UBSNgeoref = GetLastUsedGeorefObject(UBasinVECT);

Recreate the watershed elements using the new modified points

Use the new sample point locations to compute a new user defined watershed

Open the "VectorUserBasin" and get it's georef

Get a vector object handle for the computed
basins from the watershed structure

Copy the sample database table from original vector

Relate the user basins to the appropriate
sample points that are within the basin

Sample ID related to the basin polygon

Number of vector polygons related to that sample

Total of all vector polygons related to that sample

Create a record in the table for each basin

In object coordinates

If a polygon was found, save the sample name to the polygon table

