
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • September 2004

A common geospatial question is “Given my location, what facilities are closest to me?” Facilities could mean
lodging, restaurants, truck stops, fire stations, polling places, or a myriad of other facility types. A related question is
“What roaming vehicles (for example, cement trucks, tow trucks, express pickup) are within a particular service area
(represented by a polygon)?” “Closeness”
can be determined in various ways, such
as overlapping polygons, shortest routes,
fastest routes, least cost routes, and so on.
These kinds of geospatial questions can be
resolved and visualized in the TNT prod-
ucts using a variety of approaches (Tool
Scripts, Macro Scripts, SML, queries,
APPLIDATs, routing, or network analysis).
Control Scripts can provide highly inter-
active and automatic tools for geoexploring
using dynamic feature location.

“Automatic” indicates that these
“feature location” analyses and re-
sulting visualization all occur au-
tomatically in less than a second
each time the cursor is moved—
no mouse click or other selection
procedure is necessary.

This example of automatic feature location
uses a Control Script to draw the outlines
and symbolic representations of the elementary, middle, and high schools in the attendance area assigned to the land
parcel at the current cursor location. The Control Script finds and outlines the land parcel beneath the cursor and
identifies it with a DataTip address. It then determines the three school attendance area polygon boundaries that

include the current land parcel and draws
the three school property boundaries and
adds a school type symbol and name be-
neath each.

At map scales less than 1:50,000, the
school symbol is centered over the school
property and the property outline is not
drawn. At map scales of 1:50,000 or
greater, the school parcel outline is drawn
and the symbol and school name label
are positioned below the outline (illus-
trated above). When the location of the
nearest school in any grade level group-
ing is not visible in the View, a symbol is
positioned at the closest edge of the View
in a straight line from the cursor location
to the school with an arrow indicating the
direction of the school [shown at left for
middle and high schools (blue and yel-
low, respectively)].

Exploring District Services

The address for
the cursor location
is shown to
confirm you have
located the
desired property.

Dynamic Geospatial Analysis

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • September 2004

Partial Script for Exploring District Services (schools.sml)
see back of plate entitled Using Overlapping Polygons for more of this script

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

func OnViewDataTipShowRequest(class GRE_VIEW view, class
POINT2D mouseScrn, class TOOLTIP datatip)

{
view.RestoreAll();
class GC gc = CreateGCForDrawingArea(view.DrawingArea);
ActivateGC(gc);
gc.SetColor(“white”);
class STRING name = “Schools”;
class GRE_LAYER_VECTOR curPtLayer =

MainLayout.GetGroupByName(“Schools”).FirstLayer;
class GRE_LAYER_VECTOR curDistLayer =

MainLayout.GetGroupByName(“School Districts”).FirstLayer;
class GRE_LAYER_VECTOR parcels =

MainLayout.GetGroupByName(“Overlays”).GetLayerByName(“Parcels”);
class VECTOR parcelVec;
VectorLayerGetObject(parcels, parcelVec);
class TRANSPARM tpPrclToScrn = ViewGetTransLayerToScreen(view,

parcels);
class POINT2D mousepoint;
mousepoint = TransPoint2D(mouseScrn,

ViewGetTransViewToScreen(view, 1));
mousepoint = TransPoint2D(mousepoint,

ViewGetTransMapToView(view, parcels.Projection, 1));
numeric closeParcel = FindClosestPoly(parcelVec, mousepoint.x,

mousepoint.y);
if(closeParcel != 0 && view.CurrentMapScale < mouselocPrclScl) {

class RECT parcelExtents = drawParcel(
gc, tpPrclToScrn, parcelVec, closeParcel);

class string parcelAddress =
parcelVec.Poly[closeParcel].CA032904.SITUS_ADDR$;

gc.DrawTextSetHeightPixels(12);
numeric addressLen = gc.TextGetWidth(parcelAddress);
gc.SetColor(“Lemon Chiffon”);
gc.FillRect(parcelExtents.x2 + 10, parcelExtents.y2, addressLen, 12);
gc.DrawTextSetFont(“Arial”);
gc.DrawTextSimple(parcelAddress, parcelExtents.x2 + 10,

parcelExtents.y2 + 11);
}
class STRINGLIST parcelColors;
parcelColors.AddToFront(“Yellow”);
parcelColors.AddToFront(“Blue”);
parcelColors.AddToFront(“Dark Orange”);
numeric iterNum=1;
for(iterNum = 1; curPtLayer != 0 && curDistLayer != 0; iterNum++) {

class VECTOR ptsVect, distVect;
VectorLayerGetObject(curPtLayer, ptsVect);
VectorLayerGetObject(curDistLayer, distVect);
class string styleObj = “STYLE”;
gc.DrawUseStyleSubObject(_context.Filename, ptsVect.$info.Name,

styleObj);
class POINT2D schoolLoc, mousepoint;
numeric pointElemNum;
mousepoint = TransPoint2D(mouseScrn,

ViewGetTransViewToScreen(view, 1));
mousepoint = TransPoint2D(mousepoint,

ViewGetTransMapToView(view, curDistLayer.Projection, 1));

if((pointElemNum = FindPointInPolyElemNum(ptsVect, distVect,
mousepoint)) != -1) {

schoolLoc.x = ptsVect.Point[pointElemNum].Internal.x;
schoolLoc.y = ptsVect.Point[pointElemNum].Internal.y;
schoolLoc = TransPoint2D(schoolLoc,

ViewGetTransMapToView(view, curDistLayer.Projection));
schoolLoc = TransPoint2D(schoolLoc,

ViewGetTransViewToScreen(view));
class RECT extents;
numeric buf=5;
extents.x1 = buf; extents.y1 = buf; extents.x2 = view.width-buf;

extents.y2 = view.height-buf;
class POINT2D newLocation = clipPoint(schoolLoc, mouseScrn,

extents);
class TEXTSTYLE textStyle;
textStyle.Shadow = 1;
gc.TextStyle = textStyle;
gc.DrawTextSetColors(“white”, “black”);
gc.DrawTextSetFont(“Arial Black”);
gc.DrawTextSetHeightPixels(12);
class string schoolName =

ptsVect.Point[pointElemNum].SchoolName.Name$;
schoolName = schoolName.toUppercase();
numeric textWidth = gc.TextGetWidth(schoolName);
gc.DrawSetPointStyle(“School”);
if(newLocation.x != schoolLoc.x || newLocation.y != schoolLoc.y) {

gc.SetColor(“white”);
numeric angle = calcAngle(schoolLoc, mouseScrn);
gc.DrawArrow(newLocation.x, newLocation.y, angle * 180 / PI,
20, 20);
gc.SetLineWidth(3);
drawAngledLine(gc, newLocation.x, newLocation.y, angle, 40);
gc.SetLineWidth(1);
drawAngledPoint(gc, newLocation.x, newLocation.y, angle, 70);
class POINT2D textpos = getAngledPoint(newLocation.x,
newLocation.y, angle, 70);
gc.DrawTextSimple(schoolName, textpos.x - textWidth/2, textpos.y
+ labelOffset);

} else {
if(view.CurrentMapScale < schoolPrclScl) {

class POINT2D schoolLocParcel = TransPoint2D(schoolLoc,
ViewGetTransViewToScreen(view, 1));

schoolLocParcel = TransPoint2D(schoolLocParcel,
ViewGetTransMapToView(view, parcels.Projection, 1));

numeric schoolPolyID = FindClosestPoly(parcelVec,
schoolLocParcel.x, schoolLocParcel.y);

gc.SetColor(parcelColors.GetString(iterNum-1));
class RECT parcelExtents = drawParcel(gc, tpPrclToScrn,

parcelVec, schoolPolyID);
class POINT2D screenCenter;
screenCenter.x = view.Width/2;
screenCenter.y = view.Height/2;
numeric yPointPos = parcelExtents.y2 + schoolSymOffset;
gc.DrawPoint(newLocation.x, yPointPos);
gc.DrawTextSimple(schoolName, newLocation.x - textWidth/2,

yPointPos + labelOffset);
} else { last 11 lines of script omitted

function called when cursor
pause triggers DataTip

draw parcel under
mouse pointer if map
scale appropriate

draw DataTip
for parcel

set parcel
boundary colors

draw school name
below symbol

draw arrow if
school not in View

draw school
point symbols

draw
school
parcel if
map scale
appropriate

