
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • December 2004

Pop-In View
Sample Tool Script

(left-click)

When you select the custom PopInView tool from the View
window’s tool bar, a dialog window automatically opens
temporarily so you can specify the type of object to use for the
pop-in view (raster or vector) and then select the object. In
this example a raster object was selected to provide the
circular pop-in view when and where the left mouse-button is
pressed. This pop-in raster is a shaded-relief geologic map
showing labeled rock units and faults (red lines). The back-
ground raster object is a color orthoimage.

When you have selected a vector object as the source for the pop-in view, each left-mouse click extracts a circular area from the
source vector and adds it to the group temporarily as a separate display layer. Legend entries for the pop-in vector therefore
appear automatically in LegendView, and any previously-designated DataTips are active, including those for the pop-in vector
object. In this example the base group includes a color orthoimage mosaic with an overlay of major streets and the pop-in view
shows partially-transparent floodplain polygons. The DataTip exposed when the cursor pauses within the area of the GraphTip
includes any location/element-specific information set up for the GraphTip object and for any other layers; in this case the
DataTip identifies the 100-year floodplain from the GraphTip layer and the street name from the MajorStreets layer. The DataTip
for areas outside the GraphTip will show only information from the original display layers (in this case the MajorStreets layer).

A Tool Script can be used to present location-specific graphical
information in a View in similar fashion to a GraphTip created by a
Display Control Script. But while a GraphTip appears automati-
cally with preset content whenever the cursor pauses over the View,
with a Tool Script the user can have control over when and where
the information appears and even over the specific content presented.
A custom tool created by a Tool Script can be selected or deselected
at any time from the View window’s toolbar, and the user triggers
the tool action (information presentation) explicitly with a mouse
click. The Tool Script can also provide a dialog window(s) to al-
low selection of the geospatial object to be used as the source for
the data presentation or to set other parameters. As with a GraphTip,
this source object need not be a layer in the group or layout, and the
ToolScript can also adjust for any differences in Coordinate Refer-
ence System, datum, or cell size between the source object and the
geospatial data in the View. A Tool Script also can be saved with a
group or layout for use in an atlas and can be set as the default tool
when the atlas is opened. The View can also include multiple ver-
sions of the same tool tied to different data, or multiple custom
tools with different purposes, each accessible from its own icon
button or Tool menu entry (as many as needed) on the View. Like
the standard tools on the View’s toolbar, these custom tools can be
added or removed from the window as needed to tailor the View to
your intended audience.
The sample Tool Script PopInViewTool.sml was created by
MicroImages to demonstrate these capabilities; excerpts of the script
are shown on the reverse side of this page and the complete script is
available for download from MicroImages.com. The tool created
by the script has capabilities similar to the Spyglass GraphTip scripts described in the color plate entitled Sample GraphTip Script: Spy-

glass View. The tool creates a circular GraphTip view at the cursor
location when the left mouse-button is pressed. When you first se-
lect the tool, a dialog opens to allow you to select the source of the
geodata to present in the circular view (raster or vector object in a
Project File or any linkable external file such as GeoTIFF, shapefile,
MrSID, ...). The pop-in GraphTip then shows the matching circular
portion of this object centered on the left-click position and match-
ing the current scale of the View. When a raster object has been
selected as a source, the pop-in view is simply rendered into the
drawing area of the view window as needed. When a vector object
has been selected as the source, the tool extracts the matching vector
data to a temporary object covering only the GraphTip area. This
temporary vector object is then added to the group as a separate
display layer. In either case, the previous results are erased as each
new pop-in view is presented or when another graphical tool is se-
lected from the View’s toolbar.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
Phone +1 402 477 9554 • Support +1 402 477 9562 • info@microimages.com • www.microimages.com • December 2004

LayerPoint = ScreenToLayer.ConvertPoint2DFwd(SourcePoint);

MapPoint = TransPoint2D(LayerPoint, FObjToMap);

ToolMapPoint = FMapToToolMap.ConvertPoint2dFwd(MapPoint);

ToolObjPoint = TransPoint2D(ToolMapPoint, ToolMapToObj);

point =ToolObjPoint;
shape.Clear();

local class POINT2D circlepoint;
local numeric x, y;

local numeric radius = 500;
local numeric r2 = radius * radius;
point.y += radius/2;

for (x = -radius; x <= radius; x++) {
y = sqrt((r2 - x*x) +0.5);
circlepoint.x = point.x + x;
circlepoint.y = point.y + y;
shape.AppendVertex(circlepoint);
}

for (x = radius; x >= -radius; x--) {
y = sqrt((r2 - x*x) +0.5);
circlepoint.x = point.x +x;
circlepoint.y = point.y -y;
shape.AppendVertex(circlepoint);
}

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

Script Excerpts for Pop-In View Tool Script
(PopInViewTool.sml)

proc OnLeftButtonPress () {
point.x = ceil(PointerX);
point.y = ceil(PointerY);

ScreenToLayer = View.GetTransLayerToScreen(F_layer, 1);

LayerPoint = ScreenToLayer.ConvertPoint2DFwd(point);
local numeric onNull = IsNull(F[LayerPoint.y, LayerPoint.x]);

if (isRaster) {
View.RestoreAll();
if (onNull == false) then

RasterTool();
} else if (isVector) {
local numeric removed = RemoveVectorLayer();
if (removed == 2) then

View.RedrawDirect("NoBlankScreen");
if (onNull == false) then

VectorTool();
} else {
PopupMessage("Please select an input object");
dialog.DoModal();
}

}

only redraw if a vector layer
was actually removed

clear previous tool image from View

Procedure called when user presses 'left' pointer/mouse button

transform cursor screen coordinates to object
coordinates of raster that is first layer in group

check if
cursor is
on null cell

get transparm from screen coordinates
to raster layer coordinates

CreateTempVector(ExtractedVector,"", "NoStatusText");

ToolGeo.OpenLastUsed(ToolVector);
ToolGeo.GetTransparm(ToolMapToObj, 1, ToolGeo.GetCalibModel());
FMapToToolMap.OutputCoordRefSys = ToolGeo.GetCoordRefSys();
FGeo.OpenLastUsed(F);
FGeo.GetTransparm(FObjToMap, 0, FGeo.GetCalibModel());
FMapToToolMap.InputCoordRefSys = FGeo.GetCoordRefSys();

SourcePoint = point;

create temporary vector objects:

Procedure to extract circular area from source vector to
show as tool result in View. Draws circle in MaskVector
to use as extraction boundary; extracted vector is
added to group as a layer

temp vector to draw circle in for extraction

proc VectorTool () {

CreateTempVector(MaskVector,"VectorToolkit,Polygonal", "NoStatusText");
CopySubobjects(ToolVector, MaskVector, "GEOREF");

extracted vector to display as tool result

get projection information for coordinate transformations

convert to map coordinates of displayed raster

convert map coordinates to object coordinates of tool vector

find position in lin and col of displayed raster

clear previous polyline

class instance for computed vertex
position on circumference of circle

radius of circle in source
object coordinates

create top half of circle
and add to polyline

create bottom half of
circle and add to polyline

close polyline and add it as an element
to the MaskVector to use for extractionshape.SetClosed(1);

VectorAddPolyLine(MaskVector, shape);

ExtractedVector = VectorExtract(MaskVector, ToolVector, "InsideClip");
VectLayer = GroupQuickAddVectorVar(Group, ExtractedVector);
View.RedrawDirect("NoBlankScreen");
}

 Procedure called when user presses 'left' pointer/mouse button

proc OnLeftButtonPress () {
point.x = ceil(PointerX);
point.y = ceil(PointerY);

ScreenToLayer = View.GetTransLayerToScreen(F_layer, 1);

LayerPoint = ScreenToLayer.ConvertPoint2DFwd(point);

local numeric onNull = IsNull(F[LayerPoint.y, LayerPoint.x]);

if (isRaster) {
View.RestoreAll();
if (onNull == false) then

RasterTool();
}
else if (isVector) {

local numeric removed = RemoveVectorLayer();
if (removed == 2) then

View.RedrawDirect("NoBlankScreen");
if (onNull == false) then

VectorTool();
}
else {

PopupMessage("Please select an input object");
dialog.DoModal();
}

}

get transparm from screen coordinates to raster layer coordinates

transform cursor screen coordinates to object
coordinates of raster that is first layer in group

check if cursor is on null cell

only redraw if a
vector layer was
actually removed

clear previous tool image from View

if on non-null cell, show raster tool result

if on non-null cell, show vector tool result

proc OnActivate () {
F_layer = Group.FirstLayer;
DispGetRasterFromLayer(F, F_layer);
}

Procedure called when tool is activated

get handle for raster that
is first layer in group

draw circular polygon in mask vector to use as extraction boundary

find map coordinates in georeference used by tool vector

apply transformations

