
 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • October 2004

There are many infrastructure applications (for example, water and sewer
lines) in which a graphical profile can provide an invaluable visualization
tool. DataTips can provide considerable information about the elements at a
particular location, however, you may be interested in viewing information
for multiple contiguous elements either alone or with additional information,
such as elevation or start and end node information along a line. In addition
to relative and absolute elevation, a variety of easily understood information
can be presented in a sophisticated graphical profile. A Tool Script that
incorporates a number of these features is provided as an example that can
be readily adapted to your applications. This sample Tool Script lets you
select and view connected lines in profile with additional information, such
as node attributes for the start and end of the line, pipe material, diameter,
length, and so on.

Selection Features
• only allows selection of a sequence of connected lines
• add to either end of connected lines
• selected and active line colors you set are used
• active element highlights in both View and Line Profile window on

mouseover in either window
• left click to select lines, right click to update profile graphic
• clear selected lines to start a new set of connected lines

Attributes
• labels line ends with manhole (node) ID
• presents pipe material, diameter, and slope for the active line
• displays total length of selected lines

Graphics
• draw pipes as filled or un-

filled polygons
• uses active and highlight

colors you set from the
View/Options menu

• show/hide grid with X and
Y intervals you set

• set elevation range for graphic
• pipe diameter and length determine pipe polygon dimensions at

scale set by elevation range
• get elevation and distance for cursor position in profile graphic
• manhole location drawn as vertical line from pipe bottom to sur-

face
• show surface approximation (connect manhole lines) or draw sur-

face profile from DEM
• Coordinate Display panel provides information about position of

cursor when over graphical display

Infrastructure Graphical Profile
Sample Tool Script

unfilled (above), filled (upper left and below)

Choosing to use the DEM alters the graphic from straight
line connection from manhole to manhole to a line that
represents the changes in surface elevation along the
distance of the pipe. The bottom layer is presumed to
contain the surface values.

Update the selected lines displayed in the Line
Profile window by right clicking in either the
Line Profile or View window.

 MicroImages, Inc. • TNTgis - Advanced Software for Geospatial Analysis
 Voice (402)477-9554 • FAX (402) 817-0151 • email info@microimages.com • web www.microimages.com • October 2004

Partial Script for Infrastructure Graphical Profiles (LineProfile.sml)

Many sample scripts have been prepared to illustrate how you might use the features of the TNT products’ scripting language
for scripts and queries. These scripts can be downloaded from www.microimages.com/freestuf/scripts.htm.

func class POLYLINE constructPipeFace(class POLYLINE bottom,
class POLYLINE top)

{
local class POLYLINE ret;
if (bottom.GetNumPoints() != top.GetNumPoints())
{

numeric fillPipes = 0;
return ret;

}
local numeric i;
for (i=0; i<bottom.GetNumPoints(); i=i+2)
{

ret.AppendVertex(bottom.GetVertex(i));
ret.AppendVertex(bottom.GetVertex(i+1));
ret.AppendVertex(top.GetVertex(i+1));
ret.AppendVertex(top.GetVertex(i));
ret.AppendVertex(bottom.GetVertex(i));

}
return ret;

}
func class POLYLINE constructPipeTop(class POLYLINE pipeBottom,

class POLYLINE origLine)
{

local class POLYLINE newLine;
local class POINT2D tmp;
local numeric i;
for (i=0; i<origLine.GetNumPoints(); i++)
{

local numeric vertex1, vertex2;
if (i==0) vertex1 = i;
else vertex1 = i-1;
vertex2 = i;
local class POINT2D p1 = origLine.GetVertex(vertex1);
local class POINT2D p2 = origLine.GetVertex(vertex2);
if (p1==p2)
{

vertex1++;
vertex2++;
if (i==0) vertex1 = i;

}
local numeric elemNum = findClosestLineElement(origLine,

vertex1, vertex2);

local numeric elevation = readLineTableRecord(elemNum,
“PIPE_DIAM”)/1000 + pipeBottom.GetVertex(i).y;

if (!IsNull(elevation))
{

tmp.x = pipeBottom.GetVertex(i).x;
tmp.y = elevation;
newLine.AppendVertex(tmp);

}
}
return newLine;

}

func class STRINGLIST constructManholeNames(class POLYLINE
origLine)

{
local class STRINGLIST manholeNames;
local class POINT2D prevPoint;

local numeric i;
for (i=0; i<origLine.GetNumPoints(); i++)
{

local class POINT2D point1 = origLine.GetVertex(i);
local string manholeLabel = “”;
if (point1!=prevPoint)
{

local numeric elemNum = FindClosestNode(lineVector,
point1.x, point1.y);

manholeLabel = readNodeTableRecordStr(elemNum,
“MH_ID”);

}
manholeNames.AddToEnd(manholeLabel);
prevPoint = point1;

}
return manholeNames;

}

func class POLYLINE constructManholeDepth(class POLYLINE
pipeBottom, class POLYLINE origLine)

{
local class POLYLINE newLine;
local class POINT2D tmp;

local numeric i;
for (i=0; i<origLine.GetNumPoints(); i++)
{

local class POINT2D point1 = origLine.GetVertex(i);
local numeric elemNum = FindClosestNode(lineVector, point1.x,

point1.y);
local numeric elevation = readNodeTableRecord(elemNum,

“MH_INVERT”);
tmp.x = pipeBottom.GetVertex(i).x;
tmp.y = elevation;
newLine.AppendVertex(tmp);

}
return newLine;

}
func class POLYLINE constructPipeBottom(class POLYLINE

origLine)
{

local string field = “PIPE_I_SN”;
local class POLYLINE newLine;
if (origLine.GetNumPoints()<1) return newLine;
local class POINT2D tmp;
local numeric i;
local numeric distance=0;
local numeric elemNum = findClosestLineElement(origLine, 0, 1);
if (isLineReversed(elemNum))
{

field = “CAN_I_DS”;

function called to
construct the pipe face

function called to
construct the pipe top

get elevation
from end node

function called
to construct
manhole names

draw the manhole
names at the
manhole tops

function called
to construct
manhole depth

get elevation
from end node

function called
to construct the
pipe bottom

The following excerpt is only a portion of the part of the script
that draws the graph section of the Line Profile window.

check to see if
line is reversed

